E. C. Subbarao, Solid Electrolytes and their Applications, 1980.
DOI : 10.1007/978-1-4613-3081-3

Y. Ren, K. Chen, R. Chen, T. Liu, Y. Zhang et al., Oxide Electrolytes for Lithium Batteries, Journal of the American Ceramic Society, vol.53, issue.3, pp.98-3603, 2015.
DOI : 10.1016/0022-4596(84)90122-1

Y. Wang, W. D. Richards, S. P. Ong, L. J. Miara, J. C. Kim et al., Design principles for solid-state lithium superionic conductors, Nature Materials, vol.135, issue.10, pp.1026-1031, 2015.
DOI : 10.1063/1.1329672

C. Sun, J. Liu, Y. Gong, D. P. Wilkinson, and J. Zhang, Recent advances in all-solid-state rechargeable lithium batteries, Nano Energy, vol.33, pp.33-363, 2017.
DOI : 10.1016/j.nanoen.2017.01.028

S. Stramare, V. Thangadurai, and W. Weppner, Lithium lanthanum titanates: a review
DOI : 10.1002/chin.200352244

. Bose, Study of the temperature dependent transport properties in nanocrystalline lithium lanthanum titanate for lithium ion batteries, J. Phys. Chem. Solids, vol.91, pp.114-121, 2016.

Y. Li, J. T. Han, C. A. Wang, H. Xie, and J. B. Goodenough, Optimizing Li+ conductivity in a garnet framework, Journal of Materials Chemistry, vol.23, issue.7, pp.22-15357, 2012.
DOI : 10.1021/cm103595x

Y. Kamiyama, S. Kato, K. Hama, A. Kawamoto, and . Mitsui, A lithium superionic conductor

M. Tatsumisago and A. Hayashi, Sulfide Glass-Ceramic Electrolytes for All-Solid-State Lithium and Sodium Batteries, International Journal of Applied Glass Science, vol.22, issue.39, pp.226-235, 2014.
DOI : 10.1039/c2jm16802b

H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, and G. Y. Adachi, Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate, Journal of The Electrochemical Society, vol.137, issue.4, pp.137-1023, 1990.
DOI : 10.1149/1.2086597

H. Robert and . Li, Ion Conducting Membrane as Protection for the Li Anode in an Aqueous Li?Air Battery: Coupling Sol?Gel Chemistry and Electrospinning, Langmuir, p.33, 2017.

S. D. Jackman and R. A. Cutler, Effect of microcracking on ionic conductivity in LATP, Journal of Power Sources, vol.218, pp.65-72, 2012.
DOI : 10.1016/j.jpowsour.2012.06.081

X. Xu, Z. Wen, X. Yang, and L. Chen, Dense nanostructured solid electrolyte with high Liion conductivity by spark plasma sintering technique, plasma versus conventional sintering in the electrical properties of Nasicon-type materials, 2008.
DOI : 10.1016/j.materresbull.2007.08.007

M. Oghbaei and O. Mirzaee, Microwave versus conventional sintering: A review of fundamentals, advantages and applications, Journal of Alloys and Compounds, vol.494, issue.1-2, pp.175-189, 2010.
DOI : 10.1016/j.jallcom.2010.01.068

J. Croquesel, D. Bouvard, J. M. Chaix, C. P. Carry, and S. Saunier, Development of an instrumented and automated single mode cavity for ceramic microwave sintering: Application to an alpha pure alumina powder, Materials & Design, vol.88, pp.88-98, 2015.
DOI : 10.1016/j.matdes.2015.08.122

URL : https://hal.archives-ouvertes.fr/hal-01263552

J. Croquesel, D. Bouvard, J. M. Chaix, C. P. Carry, S. Saunier et al., Direct microwave sintering of pure alumina in a single mode cavity: Grain size and phase transformation effects, Acta Materialia, vol.116, pp.53-62, 2016.
DOI : 10.1016/j.actamat.2016.06.027

URL : https://hal.archives-ouvertes.fr/hal-01446360

J. Rodriguez-carvajal and F. , 2k: Rietveld, Profile Matching and Integrated Intensity Refinement of X-ray and Neutron Data, V 1, 2001.

E. Barsoukov and J. R. Macdonald, Impedance spectroscopy: Theory, experiment, and applications. 2 nd Ed, 2005.
DOI : 10.1002/0471716243

D. Bregiroux, S. Lucas, E. Champion, F. Audubert, and D. Bernache-assollant, Sintering and microstructure of rare earth phosphate ceramics REPO 4 with RE
URL : https://hal.archives-ouvertes.fr/emse-00447275

K. Arbi, W. Bucheli, R. Jiménez, and J. Sanz, High lithium ion conducting solid electrolytes based on NASICON Li 1+x Al x M 2???x (PO 4 ) 3 materials (M = Ti, Ge and 0 ??? x ??? 0.5), Journal of the European Ceramic Society, vol.35, issue.5
DOI : 10.1016/j.jeurceramsoc.2014.11.023

. Tietz, A single crystal X-ray and powder neutron diffraction study on NASICON-type

K. Waetzig, A. Rost, U. Langklotz, B. Matthey, and J. Schilm, An explanation of the microcrack formation in Li 1, J. Eur. Ceram. Soc, p.36, 1995.

F. Ma, E. Zhao, S. Zhu, W. Yan, D. Sun et al., Preparation and evaluation of high lithium ion conductivity Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 solid electrolyte obtained using a new solution method, Solid State Ionics, vol.295, pp.7-12, 2016.
DOI : 10.1016/j.ssi.2016.07.010

M. Kotobuki and M. Koishi, Preparation of Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 solid electrolyte via a sol-gel route using various Al sources, Ceram. Int, pp.39-4645, 2013.

P. Taberna, F. Simon, and . Ansart, Lithium conducting solid electrolyte Li 1

Q. Ma, Q. Xu, C. Tsai, F. Tietz, and O. Guillon, A novel sol?gel method for large-scale production of nanopowders: Preparation

K. M. Kim, D. O. Shin, and Y. Lee, Effects of preparation conditions on the ionic conductivity of hydrothermally synthesized Li1+xAlxTi2-x(PO4)3 solid electrolytes, Electrochimica Acta, vol.176, pp.1364-1373, 2015.
DOI : 10.1016/j.electacta.2015.07.170

K. Arbi, M. Hoelzel, A. Kuhn, F. García-alvarado, and J. Sanz, Structural factors that enhance lithium mobility in fast-ion Li 1+x Al x Ti 2-x (PO 4 ) 3 (0 ? x ? 0.4) conductors investigated by neutron diffraction in the temperature range 100-500 K, Inorg. Chem, pp.52-9290, 2013.