G. Glöckner, A. Rosenthal, and K. Valentin, The Structure and Gene Repertoire of an Ancient Red Algal Plastid Genome, Journal of Molecular Evolution, vol.51, issue.4, pp.382-390, 2000.
DOI : 10.1007/s002390010101

N. Ohta, M. Matsuzaki, O. Misumi, S. Miyagishima, and H. Nozaki, Complete Sequence and Analysis of the Plastid Genome of the Unicellular Red Alga Cyanidioschyzon merolae, DNA Research, vol.10, issue.2, pp.67-77, 2003.
DOI : 10.1093/dnares/10.2.67

M. Reith and J. Munholland, Complete nucleotide sequence of thePorphyra purpurea chloroplast genome, Plant Molecular Biology Reporter, vol.13, issue.4, pp.333-335, 1995.
DOI : 10.1007/BF02669187

D. Smith, J. Hua, R. Lee, and P. Keeling, Relative rates of evolution among the three genetic compartments of the red alga Porphyra differ from those of green plants and do not correlate with genome architecture, Molecular Phylogenetics and Evolution, vol.65, issue.1, pp.339-344, 2012.
DOI : 10.1016/j.ympev.2012.06.017

J. Hagopian, M. Reis, J. Kitajima, D. Bhattacharya, and M. De-oliveira, Comparative Analysis of the Complete Plastid Genome Sequence of the Red Alga Gracilaria tenuistipitata var. liui Provides Insights into the Evolution of Rhodoplasts and Their Relationship to Other Plastids, Journal of Molecular Evolution, vol.51, issue.4, pp.464-477, 2004.
DOI : 10.1093/oxfordjournals.molbev.a003851

L. Couceiro, I. Maneiro, S. Mauger, M. Valero, and J. Ruiz, MICROSATELLITE DEVELOPMENT IN RHODOPHYTA USING HIGH-THROUGHPUT SEQUENCE DATA1, Journal of Phycology, vol.11, issue.6, pp.1258-1265, 2011.
DOI : 10.1046/j.0962-1083.2001.01418.x

C. Chan, E. Yang, T. Banerjee, H. Yoon, and P. Martone, Red and Green Algal Monophyly and Extensive Gene Sharing Found in a Rich Repertoire of Red Algal Genes, Current Biology, vol.21, issue.4, pp.328-333, 2011.
DOI : 10.1016/j.cub.2011.01.037

J. Sutherland, S. Lindstrom, W. Nelson, J. Brodie, and M. Lynch, A NEW LOOK AT AN ANCIENT ORDER: GENERIC REVISION OF THE BANGIALES (RHODOPHYTA)1, Journal of Phycology, vol.24, issue.Suppl., pp.1131-1151, 2011.
DOI : 10.1111/j.1529-8817.2006.00210.x

C. Bernard, J. Thomas, D. Mazel, A. Mousseau, and A. Castets, Characterization of the genes encoding phycoerythrin in the red alga Rhodella violacea: evidence for a splitting of the rpeB gene by an intron., Proceedings of the National Academy of Sciences, vol.89, issue.20, pp.9564-9568, 1992.
DOI : 10.1073/pnas.89.20.9564

J. Janou?kovec, A. Horák, M. Oborník, J. Luke?, and P. Keeling, A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids, Proceedings of the National Academy of Sciences, vol.155, issue.3, pp.10949-10954, 2010.
DOI : 10.1016/S0960-9822(04)00042-9

H. Yoon, K. Muller, R. Sheath, F. Ott, and D. Bhattacharya, DEFINING THE MAJOR LINEAGES OF RED ALGAE (RHODOPHYTA)1, Journal of Phycology, vol.39, issue.2, pp.482-492, 2006.
DOI : 10.1093/molbev/msi118

H. Verbruggen, C. Maggs, G. Saunders, L. Gall, L. Yoon et al., Data mining approach identifies research priorities and data requirements for resolving the red algal tree of life, BMC Evolutionary Biology, vol.10, issue.1, p.16, 2010.
DOI : 10.1186/1471-2148-10-16

J. Hughey, P. Silva, and M. Hommersand, SOLVING TAXONOMIC AND NOMENCLATURAL PROBLEMS IN PACIFIC GIGARTINACEAE (RHODOPHYTA) USING DNA FROM TYPE MATERIAL, Journal of Phycology, vol.31, issue.2, pp.1091-1109, 2001.
DOI : 10.15281/jplantres1887.31.en75

G. Saunders, Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.37, issue.1, pp.1879-1888, 2005.
DOI : 10.1046/j.1529-8817.2001.037001184.x

E. Yang, M. Kim, P. Geraldino, D. Sahoo, and J. Shin, Mitochondrial cox1 and plastid rbcL genes of Gracilaria vermiculophylla (Gracilariaceae, Rhodophyta), Journal of Applied Phycology, vol.42, issue.2, pp.161-168, 2008.
DOI : 10.2216/i0031-8884-33-3-187.1

D. Freshwater, K. Tudor, O. Shaughnessy, K. Wysor, and B. , DNA barcoding in the red algal order Gelidiales: comparison of COI with rbcL and verification of the ''barcoding gap, Cryptogamie, Algologie, vol.31, pp.435-449, 2010.

E. Yang and S. Boo, A red alga-specific phycoerythrin gene for biodiversity surveys of callithamnioid red algae, Molecular Ecology Notes, vol.12, issue.2, pp.533-535, 2006.
DOI : 10.1046/j.1365-294x.1999.00710.x

G. Presting, Identification of conserved regions in the plastid genome: implications for DNA barcoding and biological function, Canadian Journal of Botany, vol.21, issue.9, pp.1434-1443, 2006.
DOI : 10.1093/bioinformatics/17.4.383

C. Ciniglia, H. Yoon, A. Pollio, G. Pinto, and D. Bhattacharya, Hidden biodiversity of the extremophilic Cyanidiales red algae, Molecular Ecology, vol.99, issue.7, pp.1827-1838, 2004.
DOI : 10.1007/978-94-011-0882-9_9

H. Yoon, J. Hackett, C. Ciniglia, G. Pinto, and D. Bhattacharya, A Molecular Timeline for the Origin of Photosynthetic Eukaryotes, Molecular Biology and Evolution, vol.21, issue.5, pp.809-818, 2004.
DOI : 10.1093/molbev/msh075

J. Palmer, Comparative Organization of Chloroplast Genomes, Annual Review of Genetics, vol.19, issue.1, pp.325-354, 1985.
DOI : 10.1146/annurev.ge.19.120185.001545

N. Ohta, N. Sato, H. Nozaki, and T. Kuroiwa, Analysis of the Cluster of Ribosomal Protein Genes in the Plastid Genome of a Unicellular Red Alga Cyanidioschyzon merolae: Translocation of the str Cluster as an Early Event in the Rhodophyte-Chromophyte Lineage of Plastid Evolution, Journal of Molecular Evolution, vol.45, issue.6, pp.688-695, 1997.
DOI : 10.1007/PL00006273

T. Gabrielsen, M. Minge, M. Espelund, A. Tooming-klunderud, and V. Patil, Genome Evolution of a Tertiary Dinoflagellate Plastid, PLoS ONE, vol.25, issue.4, p.19132, 2011.
DOI : 10.1371/journal.pone.0019132.s002

R. Monde, J. Greene, and D. Stern, Disruption of the petB-petD intergenic region in tobacco chloroplasts affects petD RNA accumulation and translation, Molecular and General Genetics MGG, vol.263, issue.4, pp.610-618, 2000.
DOI : 10.1007/s004380051208

K. Meierhoff, S. Felder, T. Nakamura, N. Bechtold, and G. Schuster, HCF152, an Arabidopsis RNA Binding Pentatricopeptide Repeat Protein Involved in the Processing of Chloroplast psbB-psbT-psbH-petB-petD RNAs, THE PLANT CELL ONLINE, vol.15, issue.>6, pp.1480-1495, 2003.
DOI : 10.1105/tpc.010397

C. Richaud and G. Zabulon, The heme oxygenase gene (pbsA) in the red alga Rhodella violacea is discontinuous and transcriptionally activated during iron limitation, Proceedings of the National Academy of Sciences, vol.383, issue.6600, pp.11736-11741, 1997.
DOI : 10.1038/383508a0

J. Thomas and C. Passaquet, Characterization of a Phycoerythrin without ??-Subunits from a Unicellular Red Alga, Journal of Biological Chemistry, vol.257, issue.4, pp.2472-2482, 1999.
DOI : 10.1016/0304-4165(87)90130-9

J. Manhart and J. Palmer, The gain of two chloroplast tRNA introns marks the green algal ancestors of land plants, Nature, vol.345, issue.6272, pp.268-270, 1990.
DOI : 10.1038/345268a0

M. Turmel, C. Otis, and C. Lemieux, The Chloroplast Genome Sequence of Chara vulgaris Sheds New Light into the Closest Green Algal Relatives of Land Plants, Molecular Biology and Evolution, vol.23, issue.6, pp.1324-1338, 2006.
DOI : 10.1093/molbev/msk018

X. Cui, M. Matsuura, Q. Wang, H. Ma, and A. Lambowitz, A Group II Intron-encoded Maturase Functions Preferentially In Cis and Requires Both the Reverse Transcriptase and X Domains to Promote RNA Splicing, Journal of Molecular Biology, vol.340, issue.2, pp.211-231, 2004.
DOI : 10.1016/j.jmb.2004.05.004

S. Binder, T. Knill, and J. Schuster, Branched-chain amino acid metabolism in higher plants, Physiologia Plantarum, vol.38, issue.1, pp.68-78, 2007.
DOI : 10.1016/S1360-1385(02)02273-2

T. Knill, M. Reichelt, C. Paetz, J. Gershenzon, and S. Binder, Arabidopsis thaliana encodes a bacterial-type heterodimeric isopropylmalate isomerase involved in both Leu biosynthesis and the Met chain elongation pathway of glucosinolate formation, Plant Molecular Biology, vol.3, issue.3, pp.227-239, 2009.
DOI : 10.1128/jb.173.6.2086-2092.1991

C. Delwiche and J. Palmer, Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids, Molecular Biology and Evolution, vol.13, issue.6, pp.873-882, 1996.
DOI : 10.1093/oxfordjournals.molbev.a025647

D. Rice and J. Palmer, An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters, BMC Biology, vol.4, issue.1, p.31, 2006.
DOI : 10.1186/1741-7007-4-31

L. Robba, S. Russell, G. Barker, J. Brodie, and J. Russell, Assessing the use of the mitochondrial cox1 marker for use in DNA barcoding of red algae (Rhodophyta), American Journal of Botany, vol.93, issue.8, pp.1101-1108, 2006.
DOI : 10.3732/ajb.93.8.1101

P. Martone, S. Lindstrom, K. Miller, and P. Gabrielson, CHIHARAEA AND YAMADAIA (CORALLINALES, RHODOPHYTA) REPRESENT REDUCED AND RECENTLY DERIVED ARTICULATED CORALLINE MORPHOLOGIES1, Journal of Phycology, vol.7, issue.4, pp.859-868, 2012.
DOI : 10.1111/j.1529-8817.2008.00637.x

B. Clarkston and G. Saunders, sp.???nov., Botany, vol.55, issue.21, pp.119-131, 2010.
DOI : 10.1080/09670260701763484

G. Saunders, This paper is one of a selection of papers published in the Special Issue on Systematics Research., Botany, vol.57, issue.7, pp.773-789, 2008.
DOI : 10.1046/j.1529-8817.2003.02037.x

S. Lindstrom, J. Hughey, and P. Martone, New, resurrected and redefined species of Mastocarpus (Phyllophoraceae, Rhodophyta) from the northeast Pacific, Phycologia, vol.30, issue.6, pp.661-683, 2011.
DOI : 10.1080/09670260500254743

C. Destombe and S. Douglas, Rubisco spacer sequence divergence in the rhodophyte alga Gracilaria verrucosa and closely related species, Current Genetics, vol.15, issue.205, pp.395-398, 1991.
DOI : 10.1007/BF00309601

K. Rutherford, J. Parkhill, J. Crook, T. Horsnell, and P. Rice, Artemis: sequence visualization and annotation, Bioinformatics, vol.16, issue.10, pp.944-945, 2000.
DOI : 10.1093/bioinformatics/16.10.944

URL : https://academic.oup.com/bioinformatics/article-pdf/16/10/944/598346/160944.pdf

K. Lagesen, P. Hallin, E. Rødland, H. Staerfeldt, and T. Rognes, RNAmmer: consistent and rapid annotation of ribosomal RNA genes, Nucleic Acids Research, vol.35, issue.9, pp.3100-3108, 2007.
DOI : 10.1093/nar/gkm160

P. Schattner, A. Brooks, and T. Lowe, The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs, Nucleic Acids Research, vol.33, issue.Web Server, pp.686-695, 2005.
DOI : 10.1093/nar/gki366

D. Laslett and B. Canback, ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences, Nucleic Acids Research, vol.32, issue.1, pp.11-16, 2004.
DOI : 10.1093/nar/gkh152

D. Yusuf, M. Marz, P. Stadler, and I. Hofacker, Bcheck: a wrapper tool for detecting RNase P RNA genes, BMC Genomics, vol.11, issue.1, p.432, 2010.
DOI : 10.1186/1471-2164-11-432

URL : https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/1471-2164-11-432?site=bmcgenomics.biomedcentral.com

L. Dai, N. Toor, R. Olson, A. Keeping, and S. Zimmerly, Database for mobile group II introns, Nucleic Acids Research, vol.31, issue.1, pp.424-426, 2003.
DOI : 10.1093/nar/gkg049

URL : https://academic.oup.com/nar/article-pdf/31/1/424/7126495/gkg049.pdf

T. Carver, K. Rutherford, M. Berriman, M. Rajandream, and B. Barrell, ACT: the Artemis comparison tool, Bioinformatics, vol.21, issue.16, pp.3422-3423, 2005.
DOI : 10.1093/bioinformatics/bti553

URL : https://academic.oup.com/bioinformatics/article-pdf/21/16/3422/573752/bti553.pdf

A. Darling, B. Mau, F. Blattner, and N. Perna, Mauve: Multiple Alignment of Conserved Genomic Sequence With Rearrangements, Genome Research, vol.14, issue.7, pp.1394-1403, 2004.
DOI : 10.1101/gr.2289704

H. Chen and P. Boutros, VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R, BMC Bioinformatics, vol.12, issue.1, p.35, 2011.
DOI : 10.1186/1471-2105-12-35

K. Katoh and H. Toh, Recent developments in the MAFFT multiple sequence alignment program, Briefings in Bioinformatics, vol.9, issue.4, pp.286-298, 2008.
DOI : 10.1093/bib/bbn013

J. Castresana, Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis, Molecular Biology and Evolution, vol.17, issue.4, pp.540-552, 2000.
DOI : 10.1093/oxfordjournals.molbev.a026334

A. Stamatakis, RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models, Bioinformatics, vol.22, issue.21, pp.2688-2690, 2006.
DOI : 10.1093/bioinformatics/btl446

URL : https://academic.oup.com/bioinformatics/article-pdf/22/21/2688/16851699/btl446.pdf

S. Guindon, J. Dufayard, V. Lefort, M. Anisimova, and W. Hordijk, New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0, Systematic Biology, vol.59, issue.3, pp.307-321, 2010.
DOI : 10.1093/sysbio/syq010

URL : https://hal.archives-ouvertes.fr/lirmm-00511784

R. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Research, vol.32, issue.5, pp.1792-1797, 2004.
DOI : 10.1093/nar/gkh340

URL : https://academic.oup.com/nar/article-pdf/32/5/1792/7055030/gkh340.pdf

T. Hall, BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95, NT. Nucleic Acids Symposium Series, vol.98, issue.41, pp.95-98, 1999.

Z. Yang, PAML 4: Phylogenetic Analysis by Maximum Likelihood, Molecular Biology and Evolution, vol.24, issue.8, pp.1586-1591, 2007.
DOI : 10.1093/molbev/msm088

URL : https://academic.oup.com/mbe/article-pdf/24/8/1586/3853532/msm088.pdf