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Anisotropic models and angular moments methods for the
Compton scattering

C. Buet∗, B. Després† and T. Leroy‡

Abstract
This paper is devoted to the derivation of models for the Compton scattering. These

models generalize the Kompaneets equation [KOM57] to anisotropic distributions. The P1
angular method is applied, leading to a system of nonlinear Fokker-Planck equations. We show
that there is a limit regime in which this P1 model exhibits new solutions, in comparison with
the Bose condensate result of Caflish and Levermore [CL86] for the Kompaneets equation.

1 Introduction
The general aim of this paper is a hierarchy of kinetic models describing the Compton scatter-
ing. On the one hand, several kinetic models have been derived from the Boltzmann equation
by physicists [BPR69, BPR70, PL97, POM73, FKM85] for the so-called imperfect Lorentz gas
[BDD56], leading to several anisotropic Fokker-Planck type equations. On the other hand, Es-
cobedo et al [EMV03] recently derived from the Boltzmann equation for photons the Kompaneets
equation [KOM57, EMV98], which is a nonlinear Fokker-Planck type equation, by assuming the
isotropy of the distribution function and by using several original technics. In this paper we extend
this approach to anisotropic distribution functions. This leads to Fokker-Planck equations, whose
structure can be seen as anisotropic Kompaneets type equations and to an original P1 approx-
imation with two coupled Kompaneets type equations. On a complexity scale, the hierarchy of
models is described in Table 1.

Boltzmann model > Pomraning model > Moment model > Kompaneets equation

Table 1: Complexity scale of the hierarchy of models.

Boltzmann equation with Compton scattering. The Compton scattering describes the
change of energy and direction of a photon, of momentum pγ interacting with an electron, of
momentum pe, leading to another photon and another electron of momentum p′γ and p′e respec-
tively. The Compton scattering between photons and electrons can be described by a Boltzmann
equation for the density distribution function of the photons. Assuming that the electrons are at
thermodynamic equilibrium, their distribution function is given by a Maxwellian with tempera-
ture T > 0. Since the induce effects (quantum effects) are taken into account for the photons, the
collision operator is quadratic with respect to the distribution function. The density distribution
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†Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris,

France, Institut Universitaire de France.
‡CEA, DAM, DIF, F-91297 Arpajon, France.

1



of the photons f depends on the time t, on the frequency of the photon ν ∈ R+, on its space
position x ∈ R3 and on its direction Ω ∈ S2

1
c
∂tf + Ω.∇f = ν−2Q(f). (1.1)

As in [BPR70, EMV03] the collision operator is

Q(f) = σs

∫
R+×S2

ν′ν
(
1 + cos2 θ

)
|ω|−1e

− A2mc2
2kT |ω|2 e

hν′
kT q(f)dν′dΩ′ (1.2)

with 
A = hν′

c
− hν

c
+ |ω|

2

2mc,

ω = hν′

c
Ω′ − hν

c
Ω,

cos θ = Ω.Ω′,

(1.3)

and
q(f) = e−

hν
kT f(ν′,Ω′)

(
1 + f(ν,Ω)

)
− e−hν

′
kT f(ν,Ω)

(
1 + f(ν′,Ω′)

)
, (1.4)

where the space dependence has been removed for ease of notations. The mass of electrons is
m > 0. The Boltzmann constant is k > 0 and the Planck constant is h > 0. The parameter
σs is a scattering coefficient and is assumed to depend only on the space variable x. Equations
(1.3) come from classical collisional identities [BPR69, BPR70] for the collision of a photon and an
electron: the parameter ω (resp. θ) represents the transfer of impulsion (resp. variation of angle)
between the incoming and outgoing photons; the global conservation of impulsion and energy is
expressed through the following relations hν

c Ω + pe = hν′

c Ω′ + p′e and hν + |pe|2
2m = hν′ + |p′e|

2

2m
in which pe (resp. p′e) is the impulsion of the electron before (resp. after) collision. Since the
seminal works of J. A. Kompaneets [KOM57], the complexity of the Boltzmann equation (1.1)
has motivated, by various means, the design of reduced models. In our work we distinguish three
reduced models which are the Kompaneets equation (1.5), the Pomraning Boltzmann equation
with simplified collision kernel (1.7) and the original anisotropic moment model (1.8) which we
will derive and study.
The Kompaneets equation is at the other end on the complexity scale. It is a Fokker-Planck
type equation widely studied in the literature [COO71, POM73, EMV98, EMV04, KAV02]

∂tf + Ω.∇f = σs
3mc2 ν

−2 ∂

∂ν

[
ν4
(
T∂νf + f(1 + f)

)]
. (1.5)

This equation has a certain number of desirable properties inherited from (1.1), we refer to
[EMV98] for a complete study. It preserves the non negativity of the distribution function, satisfies
a H-theorem and preserves the total number of photons N(f) =

∫
ν2fdν under flux conditions at

ν = 0 and ν = +∞. Moreover the the Bose-Einstein stationary solutions of the space-homogeneous
Boltzmann equation (1.1)

fµ(ν) =
(
e(µ+ν)/T − 1

)−1
, µ > 0, (1.6)

are also stationary solutions of the space-homogeneous Kompaneets equation. Note that ν3f0(ν) =
B(ν) is the Planck function: it is the equilibrium state of the transfer equation under the assump-
tion of local thermodynamic equilibrium (ETL) [MWM99]. Theoretical results [CL86, EMV98]
from the literature about existence of a solution, long time behavior and the zero flux for the Kom-
paneets equation condition are reproduced in the Appendix A for the convenience of the reader.
The Pomraning model is an anisotropic equation [POM73] with a simplified collision kernel
which reproduces some features of an imperfect Lorentz gas [BDD56]

1
c
∂tf + Ω.∇f = σs

4π

∫
S2

(
1 + cos2 θ

)(
f ′ − f

)
dΩ′ + σs

3mc2 ν
−2 ∂

∂ν

[
ν4
(
T∂νf + f

(
1 + f

))]
. (1.7)
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This model interpolates between the full anisotropic Boltzmann equation (1.1) and the isotropic
Kompaneets equation and so is a simplified model of anisotropic effects. It has natural good
properties which are: a H-theorem, the conservation of the Bose-Einstein stationary states (1.6),
the conservation of the total number of photons and the conservation of the non negativity of the
distribution function.
An interesting moment model which approximates the Pomraning equation will finally be
considered. It is derived as a P1 approximation [BRU00, BRU02, HLM10] of (1.7)

∂tE +∇ · F = σs
3mc2 ν

−2 ∂
∂ν

[
ν4
(
T∂νE + E + E2 + 3(F,F)

)]
,

∂tF + 1
3∇E = σs

3mc2 ν
−2 ∂

∂ν

[
ν4
(
T∂νF + F + 2EF

)]
− αF,

(1.8)

where E (resp. F) is the zero-th (resp. first) order moment of the distribution function f and α ≥ 0
is a phenomenological parameter. This phenomenological parameter yields isotropization since it
damps only F and it is called the friction parameter in this work. The zero-th order moment
satisfies a Kompaneets equation, perturbed by a Burgers type term on the first order moment.
The evolution of the first order moment F involves a competition between a Fokker-Planck and
the friction term. For α = 0, we show that the threshold value on the initial photons’ number for
which a condensation phenomena appear (refer to Caflish-Levermore [CL86]) is different to the
one of the Kompaneets equation. A major asset of this new model is that it can be used to explore
the dynamics of anisotropic Kompaneets flows at reduced numerical cost.
Our main results are threefold. Firstly in Theorem 8, we prove with a simple scaling with respect
to the small parameter ε = kT

mc2 that the full Boltzmann model (1.1-1.3) tends to the Kompaneets
equation (1.5) in the sense of distribution for isotropic and homogeneous profiles. Contrary to
[EM01, EMV03, EMV98] our proof does not need any modeling of some coefficients, and in this
sense, it is simpler and more rigorous. Secondly, for α = 0, we show how to diagonalize the
anisotropic moment model (1.8) in the form of two decoupled Kompaneets equations. Relying on
earlier results of [CL86, EM01, EMV03, EMV98], it gives access to the long-time dynamics of this
model in Theorem 14. Thirdly we discretize the moment model (1.8) and illustrate the dynamics
of of anisotropic Kompaneets flows for different values of the phenomenological parameter (α = 1,
0.1 and 0).
Organization of this work Theorem 8 is proved in Section 2. The Pomraning model (1.7) is
studied in Section 3. This equation is proved to satisfy a H-theorem and the conservation of the
non negativity of the distribution function. Section 4 is devoted to the design and study of the P1
model (1.8). We prove in Theorem 14 that in the limit case α = 0, the P1 model may exhibit new
solutions with respect to the Caflish-Levermore long time regime [CL86]. Numerical illustrations
with this new model are proposed at the end of the Section.
Useful simplifications For the ease of notations, we focus on space-homogeneous profiles, drop
out the derivatives in space and focus on the major difficulty which is the collision operator (1.2-
1.3). Additionally we will use the non dimensional formulation introduced in the next section.

2 From Boltzmann to Kompaneets
In this section we study the convergence of the Botzmann equation (1.1) to the Kompaneets
equation (1.5) in the sense of distributions and prove the Theorem 8 after convenient rescaling of
the equations. We start from the Boltzmann equation (1.1). The so-called detailed balance law
writes

b(x, ν, ν′, θ)ehν
′/kT = b(x, ν′, ν, θ)ehν/kT = |ω|−1e

− mh2
2kT |ω|2

|ν′−ν|2− |ω|
2

8mkT +hν′+hν
2kT

We introduce a parameter ε = kT/mc2 << 1 and renormalize the variables and opacity

ν̄ = hν

kT
, ν̄′ = hν′

kT
, t̄ = ct

L
, x̄ = x

L
and σ̄s = cLε

3
2

h
σs.
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Set f̄(t, x̄, ν̄,Ω) = f(t,x, ν,Ω) and rescale ω̄ = c
kT ω = ν̄′Ω′ − ν̄Ω. Discarding the space depen-

dance, introduce

B̄ε(ν̄, ν̄′, θ) = kT

c
b(ν, ν′, θ)eν

′
= |ω̄|−1e

− 1
2ε

|ν̄′−ν̄|2

|ν̄′Ω′−ν̄Ω|2
− ε8 |ν̄

′Ω′−ν̄Ω|2+ ν̄+ν̄′
2 . (2.1)

It yields the equation ∂tf̄ = 1
ν̄2 Q̄ε(f̄) with the collision operator Q̄ε(f̄) = σ̄s

∫
R+×S2 ν̄

′ν̄
(
1 +

cos2 θ
)
B̄ε(ν̄, ν̄′, θ)q̄(f̄)dν̄′dΩ′. Dropping the bars for ease of notations, one obtains the non di-

mensional space-homogeneous Boltzmann equation with a small parameter ε

ν2 d

dt
f = Qε(f) := σs

1
ε

3
2

∫
R+×S2

ν′ν
(
1 + cos2 θ

)
Bε(ν, ν′, θ)q(f)dν′dΩ′. (2.2)

2.1 Preliminary considerations
We aim to study the limit as ε → 0 of the right hand side, and for the sake of simplicty we set
σs = 1. We notice that the weight |ω|−1 is singular in Bε. Nevertheless one has

|ω|2 = ν2 + ν
′2 − 2νν′ cos θ,

= (ν − ν′)2 + 2νν′(1− cos θ),
= (ν − ν′)2 + 4νν′ sin2 θ/2,

(2.3)

We refer to [EMV03] for a study of the limit of this collision operator as ε tends to zero. However
we found that an alternative is to pass to the limit in the weak sense. We also believe it is simpler
and ultimately more rigorous. Therefore we consider a test function and integrate the Boltzmann
operator in (2.2). It defines

Hε(ψ) =
∫
R+×S2

Qε(f)ψ(ν,Ω)dνdΩ

= 1
ε

3
2

∫
R+×S2

∫
R+×S2

ν′ν
(
1 + cos2 θ

)
Bε(ν, ν′, θ)q(f)ψ(ν,Ω)dνdν′dΩ′dΩ.

The quantity q defined in (1.4) is a antisymmetric difference q(f) = a(ν, ν′,Ω,Ω′)−a(ν′, ν,Ω′,Ω),
with a(ν, ν′,Ω,Ω′) = e−νf(ν′,Ω′)

(
1 + f(ν,Ω)

)
. Let us introduce some notations

b(ν,Ω) = eνf(ν,Ω)/ (1 + f(ν,Ω))
[b] (ν, ν′,Ω,Ω′) = b(ν,Ω)− b(ν′,Ω′),
[a] (ν, ν′,Ω,Ω′) = a(ν, ν′,Ω,Ω′)− a(ν′, ν,Ω′,Ω),
[ψ] (ν, ν′,Ω,Ω′) = ψ(ν,Ω)− ψ(ν′,Ω′).

(2.4)

Note the identity
[a] = −(1 + f ′)(1 + f)e−ν−ν

′
[b]. (2.5)

Lemma 1. The integral Hε(ψ) admits the formal reformulation

Hε(ψ) = 1
2ε 3

2

∫
R+×S2

∫
R+×S2

ν′ν
(
1 + cos2 θ

)
Bε(ν, ν′, θ)[a][ψ]dνdν′dΩ′dΩ. (2.6)

For eνf ∈ L∞(R+ × S2) and ψ ∈ L∞(R+ × S2), the term below the integral is integrable.

Proof. From (2.1)-(2.3)-(2.5), there exists a constant C > 0 such that for all 0 ≤ θ ≤ π

∣∣ν′ν(1 + cos2 θ
)
Bε(ν, ν′, θ)[a][ψ]

∣∣ ≤ C νν′e−(ν+ν′)/2√
(ν − ν′)2 + 2νν′(1− cos θ)

.
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Set

R =
∫
R+×R+

(∫
S2×S2

1√
(ν − ν′)2 + 2νν′(1− cos θ)

dΩdΩ′
)
νν′e−(ν+ν′)/2dνdν′

Since for any integrable real function g∫
S2×S2

g(Ω.Ω′)dΩdΩ′ =
∫
S2×S2

g(cos θ)dΩdΩ′ = 8π2
∫ π

0
g(cos θ) sin θdθ (2.7)

where 0 < θ < π, one gets

R = 8π2
∫
R+×R+

(∫ π

0

sin θ√
(ν − ν′)2 + 2νν′(1− cos θ)

dθ

)
νν′e−(ν+ν′)/2dνdν′.

A direct calculation gives∫ π

0

sin θdθ√
(ν − ν′)2 + 2νν′(1− cos θ)

=
∫ 1

−1

dµ√
(ν − ν′)2 + 2νν′(1− µ)

= min(ν, ν′)
νν′

.

So
R ≤ 8π2

∫
R+×R+

min(ν, ν′)e−(ν+ν′)/2dνdν′ <∞.

The proof is ended.

We recall now important properties of the Boltzmann equation (2.2). Firstly, the Boltzmann
equation preserves the total number of photons N(f) =

∫
S2×R+

fdΩν2dν, whose proof directly

comes from the weak formulation (2.6) of the Boltzmann operator by taking ψ = 1. Secondly
we turn to another important property of the Boltzmann equation, which is the H-theorem: it
expresses the non reversibility of the physical process [BC03, CRS08].

Theorem 2 (H-Theorem). Consider the functional

H(t) =
∫
S2×R+

(
f log f − (f + 1) log(f + 1) + νf

)
dΩν2dν. (2.8)

Assume the solution f of (2.2) is non negative and is such that f and φ(f) are integrable for the
measure ν2dνdΩ. Then the functional H is monotone non increasing, i.e.

H′(t) ≤ 0

Bose-Einstein distributions

Bµ(ν) =
(
e(µ+ν) − 1

)−1
µ ≥ 0, (2.9)

are such that
H′(t) = 0.

Proof. Consider the function φ(f) = f log(f)− (f + 1) log(f + 1) + ν
T f . One has

φ′(f) = log
(
eνf

1 + f

)
Thus H′(t) =

∫
R+×S2 Qε(f)ν2dνdΩ. Using (2.6) with ψ = log

(
eνf
1+f

)
, the third relation of (2.4)

and (2.5), one obtains

H′(t) = −1
2ε 3

2

∫
R+×S2

∫
R+×S2

ν′ν
(
1 + cos2 θ

)
Bε(ν, ν′, θ)(1 + f ′)(1 + f)e−ν−ν

′
[b][log(b)]dνdν′dΩ′dΩ.
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Since the log is a strictly increasing function, that is for any real number a and b , (a− b)(log a−
log b ≥ 0 with equality if and only if a = b, thus H′(t) ≤ 0. For Bose-Einstein distributions, [b] = 0
thus H′(t) = 0, so the inequality is an equality. The proof is ended

The analysis pursues by studying the limit of Hε(ψ) as ε tends to 0, taking care of the singu-
larity which comes from |ω|. Introduce the change of variables

y = ν + ν′√
2
∈ R+, z = ν − ν′√

2
∈ [−y, y]. (2.10)

The inverse transformation is
ν = y + z√

2
, ν′ = y − z√

2
. (2.11)

With these definition one has the formulas

νν′ = y2 − z2

2 ,

|ω|2 = |ν′Ω′ − νΩ|2 = ν2 + ν
′2 − 2νν′ cos θ = 2

(
z2 + (y2 − z2) sin2 θ/2

)
,

|ω|−1e
− 1

2ε
|ν′−ν|2

|ν′Ω′−νΩ|2
− ε8 |ν

′Ω′−νΩ|2+ ν+ν′
2 = e

− 1
2ε

z2
z2+(y2−z2) sin2 θ/2 e−

ε
4

(
z2+(y2−z2) sin2 θ/2

)
ey/
√

2√
2
(
z2 + (y2 − z2) sin2 θ/2

) .

The operator (2.6) becomes

Hε(ψ) = 1
2ε 3

2

∫
S2×S2

∫ ∞
y=0

∫ y

−y
[a][ψ]y

2 − z2

2
(
1 + cos2 θ

)
× e
− 1

2ε
z2

z2+(y2−z2) sin2 θ/2 e−
ε
4

(
z2+(y2−z2) sin2 θ/2

)
ey/
√

2√
2
(
z2 + (y2 − z2) sin2 θ/2

) dydzdΩ′dΩ.
(2.12)

The most important term in this integral is e−
1
2ε

z2
z2+(y2−z2) sin2 θ/2 which shows strong exponential

damping for small ε > 0, except for z = 0. At the level of principles, damping can be decomposed
between angular damping and frequency damping. Our first goal is to characterize the frequency
damping with a measure concentrated on z = 0 ⇔ ν = ν′. This is possible as shown with the
additional change of variables below.

For fixed y, Ω and Ω′, we define s as a function of z by

s = 1√
ε

z

|ν′Ω′ − νΩ| = 1√
2ε

z√
z2 + (y2 − z2) sin2 θ/2

. (2.13)

With this variable, the term stressed above becomes a Gaussian factor e−
1
2ε

z2
z2+(y2−z2) sin2 θ/2 = e−s

2 .
The differential relation between s and z is

ds = y2 sin2 θ/2
√

2ε
(
z2 + (y2 − z2) sin2 θ/2

)3/2 dz. (2.14)

Since ds

dz
≥ 0, the new variable s is in the interval s ∈ [s(−y), s(y)] =

[
− 1√

2ε ,
1√
2ε

]
. Algebraic

manipulations from (2.13) shows the inverse transform is correctly defined for θ 6= 0

z = | sin θ/2|√
1− 2εs2(1− sin2 θ/2)

√
2εys. (2.15)

Since | sin θ/2| ≤ | sin θ/2|√
1−2εs2(1−sin2 θ/2)

≤ 1 because it can be viewed as an increasing function of s,
we note the bound

|z| ≤
√

2εys. (2.16)
Next formula has immediate interest in the study of Hε(ψ).
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Lemma 3. One has the differential formula

dz√
z2(1− sin2 θ/2) + y2 sin2 θ/2

=
√

2ε
1− 2εs2(1− sin2 θ/2)

ds. (2.17)

Proof. The identity (2.13) can be recast as

z2(1− sin2 θ/2) + y2 sin2 θ/2 = z2

s22ε = y2 sin2 θ/2
1− 2εs2(1− sin2 θ/2)

. (2.18)

So (1− sin2 θ/2) + y2 sin2 θ/2 1
z2 = 1

s22ε . Differentiation on both sides yields

y2 sin2 θ/2dz
z3 = ds

s32ε ⇐⇒
(

1
z/(s
√

2ε)

)
dz =

(
1

y2 sin2 θ/2
× z2

s22ε

)√
2εds.

Elimination of z/(s
√

2ε) on both sides by means of (2.18) yields the claim.

Let us make the change of variables z → s in (2.12), using (2.17) and the identity y2 − z2 =
y2 1−2εs2

1−2εs2(1−sin2 θ/2) . It yields

Hε(ψ) = 1
4
√

2ε 3
2

∫
S2×S2

∫ ∞
y=0

∫ y

z=−y
[a][ψ](y2 − z2)

(
1 + cos2 θ

)
× e−

1
2ε

z2
z2+(y2−z2) sin2 θ/2 e−

ε
4

(
z2+(y2−z2) sin2 θ/2

)
ey/
√

2dy
dz√

z2(1− sin2 θ/2) + y2 sin2 θ/2
dΩ′dΩ

= 1
4ε

∫
S2×S2

∫ ∞
y=0

∫ 1√
2ε

s=− 1√
2ε

[a][ψ]y2 1− 2εs2(
1− 2εs2(1− sin2 θ/2)

)2 (1 + cos2 θ
)

× e−s
2
e
− ε4

y2 sin2 θ/2
1−2εs2(1−sin2 θ/2) ey/

√
2dsdydΩ′dΩ.

(2.19)
We claim that this expression (2.19) is a convenient formulation for passing to the limit ε→ 0+.
Indeed the strong singularity |ω|−1 is replaced by a mild singularity where the main term is

e−s
2

1−2εs2(1−sin2 θ/2) for − 1√
2ε < s < 1√

2ε . To continue the discussion, we consider that the function
f is isotropic, that is independent of Ω. In this case [a] and [ψ] in (2.19) can be roughly expressed
as a difference as in [g] = g(ν) − g(ν′) = (ν − ν′)∂νg(ν) + O(ν − ν′)2. In view of the change of
variables (2.10) and (2.15), one gets a coefficient

√
ε. Since this algebra is done for [a] and [ψ] one

gets a coefficient ε = (
√
ε)2 which is counterbalanced by the 1

ε in front of Hε(ψ) in (2.19). This
regime corresponds to the main physical one. Moreover it simplifies the mathematical analysis.

2.2 Passing to the limit for isotropic profiles
One can easily checks that isotropic functions f are preserved by the collision kernel of the non
dimensional Boltzman equation (2.2). Focusing on isotropic profiles is a way to get rid of fast
angular damping effects and to consider frequency damping which is expected to occur at longer
time scales. We therefore restrict the study to isotropic profiles. The restriction is only in this
Section and it simplifies a lot the technicalities.

Lemma 4. Assume that f and ψ are independent of Ω. One gets the expression

.

Hε(ψ) = −2π2

ε

∫ ∞
y=0

∫ 1√
2ε

s=− 1√
2ε

k(ν, ν′)[b][ψ]y2e−s
2
e−y/

√
2

×
∫ π

θ=0
e
− ε4

y2 sin2 θ/2
1−2εs2(1−sin2 θ/2)

(1 + cos2 θ)(1− 2εs2)(
1− 2εs2(1− sin2 θ/2)

)2 sin θdθdsdy

(2.20)
where k(ν, ν′) = (1 + f(ν))(1 + f(ν′)), [b](ν, ν′) = b(ν)− b(ν′) with b(ν) = eνf(ν)/ (1 + f(ν)).
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Proof. Plug the isotropic Ansatz into (2.19) and simplify the angular integration by using (2.7)
We used the identity [a] = −k(ν, ν′)[b]e−ν−ν′ = −k(ν, ν′)[b]e−

√
2y. The proof is ended.

The next step is to expand [b] and [ψ] with respect to ε. Indeed the physical variables are
expressed with respect to y and s as

ν = y/
√

2+ | sin θ/2|√
1− 2εs2(1− sin2 θ/2)

√
εys and ν′ = y/

√
2− | sin θ/2|√

1− 2εs2(1− sin2 θ/2)
√
εys. (2.21)

It can be used directly to determine the first order contribution in [ψ]√
ε

= ψ(ν)−ψ(ν′)√
ε

. Since the test
function ψ is smooth and with compact support, there exists a constant c(ψ) > 0 such that∣∣∣∣∣ [ψ]√

ε
− 2 | sin θ/2|√

1− 2εs2(1− sin2 θ/2)
ys∂νψ(y/

√
2)

∣∣∣∣∣ ≤ c(ψ)
√
εy2s2 (2.22)

where we used the bound (2.16). Similarly making the regularity assumption that b ∈W 2,∞(R+, S2),
there exists a constant denoted as c(b) > 0 such that∣∣∣∣∣ [b]√

ε
− 2 | sin θ/2|√

1− 2εs2(1− sin2 θ/2)
ys∂νb(y/

√
2)

∣∣∣∣∣ ≤ c(b)√εy2s2. (2.23)

So it is natural to replace 1
εk(ν, ν′)[b][ψ] in Hε(ψ) by their formal limit, so as to define

Iε(ψ) = −8π2
∫ ∞
y=0

∫ 1√
2ε

s=− 1√
2ε

k

(
y√
2
,
y√
2

)
∂νb

(
y√
2

)
∂νψ

(
y√
2

)
× y4s2e−s

2
e−y/

√
2
∫ π

θ=0
e
− ε4

y2 sin2 θ/2
1−2εs2(1−sin2 θ/2)

(1 + cos2 θ)(1− 2εs2) sin2 θ/2(
1− 2εs2(1− sin2 θ/2)

)3 sin θdθdsdy.

(2.24)

Finally we replace the weight e−
ε
4

y2 sin2 θ/2
1−2εs2(1−sin2 θ/2) (1+cos2 θ)(1−2εs2) sin2 θ/2

(1−2εs2(1−sin2 θ/2))3 in the second line by its
formal limit which is (1 + cos2 θ) sin2 θ/2. It defines Lε(ψ) which still depends on ε through the
bounds of the integral

Lε(ψ) = −4π
∫ ∞
y=0

∫ 1√
2ε

s=− 1√
2ε

k

(
y√
2
,
y√
2

)
∂νb

(
y√
2

)
∂νψ

(
y√
2

)
× y4s2e−s

2
e−y/

√
2
∫ π

θ=0
(1 + cos2 θ) sin2 θ/2 sin θdθdsdy.

(2.25)

For convenience, the proof that Hε(ψ) tends to L0(ψ) is decomposed in different steps.

Lemma 5. Assume f ∈ W 1,∞(R+) is such that b ∈ W 2,∞(R+). There exists a constant denoted
as c(f, ψ) > 0 such that |Hε(ψ)− Iε(ψ)| ≤ c(f, ψ)

√
ε.

Proof. In view of (2.21) and of the hypothesis, one has the inequality∣∣∣∣k(ν, ν′)− k
(
y√
2
,
y√
2

)∣∣∣∣ ≤ c(f)
√
εys. (2.26)

In combination with (2.22-2.23), it yields for some constant C > 0∣∣∣∣∣∣k(ν, ν′) [b]√
ε

[ψ]√
ε
− k

(
y√
2
,
y√
2

)(
2 | sin θ/2|√

1− 2εs2(1− sin2 θ/2)
ys

)2

∂νb(y/
√

2)∂νψ(y/
√

2)

∣∣∣∣∣∣
≤ C

(
ys+ y2s2)√ε.
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Therefore

|Hε(ψ)− Iε(ψ)| ≤ C
√
ε

∫ ∞
y=0

∫ 1√
2ε

s=− 1√
2ε

∫ π

θ=0
(ys+ y2s2)y2e−s

2
e−y/

√
2

× e−
ε
4

y2 sin2 θ/2
1−2εs2(1−sin2 θ/2)

(1 + cos2 θ)(1− 2εs2)(
1− 2εs2(1− sin2 θ/2)

)2 sin θdθdsdy

By posing µ = − cos θ one has∫ π

0

1− 2εs2 sin θdθ
1− 2εs2(1− sin2 θ/2)2 = 2

∫ 1

0

1− 2εs2dµ

(1− 2εs2 1+µ
2 )2

= 21− 2εs2

εs2

(
εs2

(1− 2εs2)(1− εs2)

)
≤ 4

Using 1 + cos θ2 ≤ 2, it shows that

|Hε(ψ)− Iε(ψ)| ≤ 8C
√
ε

∫ ∞
y=0

∫ 1√
2ε

s=− 1√
2ε

(ys+ y2s2)y2e−s
2
e−y/

√
2dsdy. (2.27)

This double integral can be bounded by separation of variables. It yields the product of an integral
in y which is immediately bounded times integrals with respect to s which can be reduced to

Ip(ε) =
∫ 1√

2ε

0
spe−s

2
ds ≤

∫ ∞
0

spe−s
2
ds := Cp,

and Cp > 0 is independent of ε > 0. Plugging in (2.27) yields the claim.

Lemma 6. Assume f ∈ L∞(R+) is such that b ∈W 1,∞(R+). There exists a constant denoted as
k > 0 such that |Iε(ψ)− Lε(ψ)| ≤ kε.

Proof. It is the same method as in the proof of the previous Lemma. One expresses the difference

e
− ε4

y2 sin2 θ/2
1−2εs2(1−sin2 θ/2) (1−2εs2)

(1−2εs2(1−sin2 θ/2))3 −1 as a telescopic sum. It makes appear a linear dependence
with respect to ε, multiplied by various terms which are ultimately bounded by estimates similar
as in the previous Lemma.

One can now pass to the limit ε→ 0+ in (2.20) in Hε(ψ).

Proposition 7. Assume f ∈ W 1,∞(R+) is such that b ∈ W 2,∞(R+). There exists a universal
constant Ck > 0 such that

lim
ε→0+

Hε(ψ) = L0(ψ) = −Ck

∫ ∞
y=0

k (ν, ν) ∂νb (ν) ∂νψ (ν) ν4e−νdν.

Proof. One has directly that Lε(ψ)→ L0(ψ) which is computed by separation of variables and a
change of variable ν = y√

2 . The constant comes from the integral with respect to s and θ, and is
given by

Ck = 4π
∫ ∞
−∞

s2e−s
2
∫ π

θ=0
(1 + cos2 θ) sin2 θ/2 sin θdθds = 8π3/2

3 .

Theorem 8. Assume f ∈W 1,∞(R+) is isotropic and such that b ∈W 2,∞(R+). Then

1
ε

3
2 ν2

∫
R+×S2

ν′ν
(
1 + cos2 θ

)
Bε(ν, ν′, θ)q(f)dν′dΩ′ −→ Ck

∂

∂ν

(
ν4
(
∂

∂ν
f + (1 + f)f

))
in the sense of distributions.

9



Proof. This is performed by integration by parts from the previous proposition and the fact that

e−νk (ν, ν) ∂νb = e−ν(1 + f)2∂ν (eνf/(1 + f)) = f(1 + f) + ∂νf.

The proof is ended.

It is convenient for the physical interpretation to reintroduce a posteriori the temperature of
electrons T > 0 in the equation and to renormalize the scattering coefficient in other to get rid of
the constant Ck. We obtain ∂tf = σsν

−2 ∂
∂ν

(
ν4 (T∂νf + (1 + f)f)

)
.

2.3 Passing to the limit for anisotropic profiles
We show now that, for anisotropic distributions f , the leading order term of Qε(f) is a Lorentz
operator.

Theorem 9. Assume f ∈W 1,∞(R+) is isotropic and such that b ∈W 2,∞(R+). Then

εQε(f) −→=
√
π

2

∫
S2

(
1 + cos2 θ

)(
f ′ − f

)
dΩ′

in the sense of distributions.

Proof. Using ( 2.19) with the change of variable r =
√
εs and Fubini theorem, one can write

ε

∫
R+×S2

Qε(f)ψ(ν,Ω)dνdΩ = εHε(φ) =
∫ 1√

2

− 1√
2

1
ε

1
2

exp(−r
2

ε
)gε(r)dr. (2.28)

and g is a continuous fonction of r. As it is well known, in the sense of distribution 1
ε

1
2

exp(−r
2

ε )→
√
πδ0. Thus

lim
ε→0

εHε =
√
πg0(0) =

√
π

4

∫
S2×S2×R+

(1 + cos θ2)(f(ν,Ω′)− f(ν,Ω))(ψ(ν,Ω′)−ψ(ν,Ω))dνdΩdΩ′

=
√
π

2

∫
S2×S2×R+

(1 + cos θ2)(f(ν,Ω′)− f(ν,Ω))ψ(ν,Ω′))dνdΩdΩ′

which is the desired result.

3 The Pomraning model
The Pomraning anisotropic model (1.7) was obtained in [POM73] by cancelling the angular depen-
dance in the energy exchange terms in a Fokker-Planck expansion. For the simplicity we consider
the Pomraning model from now on with non dimensional variables similar to what was use in the
previous section

∂tf = σs
ε

∫
S2

(
1 + cos2 θ

)(
f ′ − f

)
dΩ′ + σsν

−2 ∂

∂ν

[
ν4
(
T∂νf + f

(
1 + f

))]
. (3.1)

We systematically use the convention that the measure over the sphere is normalized
∫
S2 dΩ = 1.

The right hand side is the sum of the classical Thomson scattering which clearly reintroduces
angular damping effects plus a Kompaneets term. In this part we prove several theoretical results
for this equation, such as the conservation of the non negativity of the distribution function (lemma
10) and a H-theorem (lemma 11). With these results, equation (1.7) owns all the properties of
the Boltzmann equation expressed in the introduction, properties that we wanted to keep while
deriving simplified models. The end of this section deals with the proof of several mathematical
properties of this model. The most important one is the proof of a H-theorem, which ensures the
growth of the physical entropy of the model and thus the non reversibility of the process. We need
to make the following assumptions
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• (H1) Initial conditions: the distribution function f0 = f(t = 0) is non negative.

• (H2) The scattering coefficient σs is non negative.

The equation (1.7) inherits of some of the properties of the equation (1.1). In particular it
preserves the total number of photons and the stationary states (1.6). Since the H-theorem uses
the logarithm of the solution of (1.7), one needs to prove that it remains non negative. This is
done in the

Lemma 10 (Non negativity). Under assumptions (H1)− (H2), equation (1.7) preserves the non
negativity of the distribution function, i.e. f0(ν,Ω) ≥ 0 =⇒ f(t, ν,Ω) ≥ 0, for all 0 < t < T .

Proof. We mainly follow the proof of Carrillo et al [CRS08], that is to introduce a regularized
monotone increasing approximation sgnε of the sgn function and to define a regularized approxi-
mation |f |ε of the absolute value function |f | via the primitive of sgnε(f):

|f |ε =
∫ f

0
sgnε(g)dg. (3.2)

We also define a regularized approximation of the negative part of a function f as f−ε = (|f |ε−f)/2.
Multiplying equation (1.7) by ν2sgnε(f) and integrating over R+

ν × S2, one has

d

dt

∫
R+×S2

|f |εν2dνdΩ = σs
ε

∫
R+×S2

sgnε(f)
(
1 + cos2 θ

)(
f ′ − f

)
ν2dΩ′dΩdν

+ σs

∫
R+×S2

sgnε(f) ∂
∂ν

[
ν4
(
T∂νf + f

(
1 + f

))]
dνdΩ.

The conservation of the total number of photons

d

dt

∫
R+×S2

fν2dνdΩ = 0 = d

dt

∫
R+×S2

(
|f |ε − 2f−ε

)
ν2dνdΩ

leads in particular to

2 d
dt

∫
R+×S2

f−ε ν
2dνdΩ = σs

∫
R+×S2

sgnε(f)
(
1 + cos2 θ

)(
f ′ − f

)
ν2dΩ′dΩdν

+ σs

∫
R+×S2

sgnε(f) ∂
∂ν

[
ν4
(
T∂νf + f

(
1 + f

))]
dΩdν.

Let us denote P1 the first term of the right hand side and P2 the second one. The invariance by
change of variable Ω→ Ω′ of cos θ yields

P1 = −σs
ε

∫
R+×S2

(
1 + cos2 θ

)(
f ′ − f

)(
sgnε(f ′)− sgnε(f)

)
ν2dΩ′dΩdν.

The non decreasing monotonicity of the function sgnε(f) thus yields P1 ≤ 0. For the term P2, one
has, using an integration by parts

P2 = −σs
∫
R+×S2

ν4 sgn′ε(f)
(
T |∂νf |2 + f

(
1 + f

)
∂νf

)
dΩdν.

As pointed out by Carrillo et al, one has sgn′ε(f)f∂νf = ∂ν
(
fsgnε(f)− |f |ε

)
and sgn′ε(f)f2∂νf =

∂ν
(
f2sgnε(f)− f |f |ε

)
. Passing to the limit as ε→ 0, it yields P2 ≤ 0 and finally∫

R+×S2
f−(t)ν2dνdΩ ≤

∫
R+×S2

f−(0)ν2dνdΩ = 0,

which ends the proof.
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Lemma 11 (H-Theorem). Assume that assumptions (H1) − (H2) are satisfied and consider the
function φ(f) = f log(f)− (f + 1) log(f + 1) + ν

T f . The following inequality holds

H ′(t) = d

dt

∫
R+×S2

φ(f)ν2dνdΩ ≤ 0.

Proof. The function φ is the sum of the (mathematical) entropy of the photons f log(f) − (f +
1) log(f + 1) and a term ν

T f which is the entropy of the electrons. Let us decompose equation
(3.1) as ∂tf = Psym + Pkomp, where

Psym = σs
ε

∫
S2

(
1 + cos2 θ

)(
f ′ − f

)
dΩ′

Pkomp = σsν
−2 ∂

∂ν

[
ν4
(
T∂νf + f

(
1 + f

))]
.

It yields, by definition of the entropy H, H ′(t) =
∫
R+×S2

(
Psym + Pkomp

)
φ′(f)ν2dνdΩ. We thus

have to estimate two terms. For the first one, one has by definition of Psym∫
R+×S2

Psymφ
′(f)ν2dνdΩ = σs

ε

∫
R+×S2

(
1 + cos2 θ

)(
f ′ − f

)(
log
(

f

1 + f

)
+ ν

T

)
ν2dνdΩdΩ′.

Simple arguments yield
∫
R+×S2

(
1 + cos2 θ

)(
f ′ − f

)
ν3

T dνdΩdΩ
′ = 0. Using the invariance by

change of variable Ω→ Ω′ of cos θ = Ω.Ω′, one can write the remaining term as∫
R+×S2

Psymφ
′(f)ν2dνdΩ = −σs

ε

∫
R+×S2

(
1 + cos2 θ

)(
f − f ′

)
×
{

log
(

f

1 + f

)
− log

(
f ′

1 + f ′

)}
ν2dνdΩdΩ′.

The monotone increasing behavior of the function X 7→ log
(

X
1+X

)
and the non negativity of the

distribution function (lemma 10) yield∫
R+×S2

Psymφ
′(f)ν2dνdΩ ≤ 0.

We now turn to the Kompaneets type term Pkomp. This term has already been studied for a slightly
different Fokker-Planck equation in [CRS08] (see also [BC03]). One has, using an integration by
parts,∫

R+×S2
Pkompφ

′(f)ν2dνdΩ = −σs
∫
R+×S2

(
∂νf

f(f + 1) + 1
T

)
ν4
(
T∂νf + f

(
1 + f

))
dνdΩ.

It thus yields∫
R+×S2

Pkompφ
′(f)ν2dνdΩ = −σs

∫
R+×S2

T

f(f + 1)ν
4
(
∂νf +

f
(
1 + f

)
T

)2
dνdΩ.

Once again, the non negativity of the distribution function gives
∫
Pkompφ

′(f)ν2dνdΩ ≤ 0. The
proof is concluded.

Finally, we prove a comparison result.
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Lemma 12 (Comparison principle). Assume that f and g are two solutions of (1.7) that satisfied
the assumptions H1-H2 and f0 ≥ g0. Then f(t) ≥ g(t) for all t ∈ [0, T ].

Proof. Once again, we follow [CRS08]. Since f and g are both solutions of (1.7), one can write the
equation satisfies by h = f − g:

∂th = σs
ε

∫
S2

(
1 + cos2 θ

)(
h′ − h

)
dΩ′ + σsν

−2 ∂

∂ν

[
ν4
(
T∂νh+ h+ h

(
f + g

))]
,

Multiplying this equation by sgnε(h)ν2 and using the conservation of the total number of photons,
one gets, with the same notations than in the previous lemma (positivity, lemma 10),

d

dt

∫
h−ε ν

2dνdΩ = σs
ε

∫
sgnε(h)ν2(1 + cos2 θ

)(
h′ − h

)
dΩ′

+ σs

∫
sgnε(h) ∂

∂ν

[
ν4
(
T∂νh+ h+ h

(
f + g

))]
.

The relation sgn′ε(h)h(f+g)∂νh = (f+g)∂ν
(
hsgnε(h)−|h|ε

)
together with the previous procedure

(lemma 10) gives ∫
h−ε (t)ν2dνdΩ ≤

∫
h−ε (0)ν2dνdΩ = 0

thanks to the initial conditions, and this gives the announced result.

4 Angular moment models
What we call an angular or anisotropic moment model in this section is any simplified anisotropic
system of equations which captures some flavor of the limit isotropic Kompaneets equation. We
consider two different methods for the design of such models. The first one, called M1 approxi-
mation, is based on the symmetrized kernels with full integrations (2.12) or (2.20). Even if quite
rigorous, it produces fully non linear models and this viewed as a disadvantage in view of a numer-
ical study. On the contrary the P1 approximation method (used for example in the recent works
[BRU00, BRU02, HLM10]) yields a linear-quadratic model, at the price of a more phenomenolog-
ical derivation. The P1 approximation has many interesting features. Its structure is a system of
two quadratic Fokker-Planck equations which can be studied in order to obtain a comparison with
the Kompaneets equation. In particular it is known [CL86] that in long time range, the solution
of the Kompaneets equation might condensate near ν = 0, depending on the initial number of
photons. We show that, for the new P1 approximation in the limit case where the Fokker-Planck
term dominates the friction term in the first order moment equation, the value of the threshold on
the number of photons is modified, i.e. the anisotropic part of the distribution introduces a new set
of solutions. The result is easily proved once realizes that it is possible to decouple the P1 system
into two independent Kompaneets equations. Finally several numerical illustration conclude this
behavior.

4.1 M1 approximation
The integrals (2.12) and (2.20) can be a natural starting point for the development of anisotropic
models. We just give the main ideas on one example. Apart from technical details, it is sufficient
to take (2.20) and to insert an angular expansion. We consider the expansion

b(ν,Ω) = b0(ν) +
√
εb1(ν) ·Ω.

Since b = eνf/(1 + f), it means that f is a generalized Bose function

f(ν,Ω) = 1
eνb(ν,Ω) − 1

.
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This is very similar to moment models in transfer. The cornerstone is the quadratic form
Aε(b, ψ) = [b][ψ]

ε where we insert a test function with the same Ansatz ψ(ν,Ω) = c0(ν)+
√
εc1(ν)·Ω.

Considering the calculations in (2.22-2.23), a natural approximation is Aε(b, ψ) ≈ A[b0,b1 : c0, c1]
where

A[b0,b1 : c0, c1] = (2| sin θ/2|ys∂νb0 (ν) + b1(ν) · [Ω])
× (2| sin θ/2|ys∂νc0 (ν) + c1(ν) · [Ω])

and where we use ν =
(
y√
2

)
. Plugging directly in (2.25) one gets the integral

J (b0,b1 : c0, c1) = −4π
∫ ∞
y=0

∫
R

∫ π

θ=0
k

(
y√
2
,
y√
2

)
A[b0,b1 : c0, c1]

× y4s2e−s
2
e−y/

√
2(1 + cos2 θ) sin2 θ/2 sin θdθdsdy.

(4.1)

A weak form can be formally written as

∂t

∫
R+

c0(ν) + c1(ν) ·Ω
eνb0(ν)+νb1(ν)·Ω − 1

dνdΩ = J (b0,b1 : c0, c1) (4.2)

for all test functions c0 and c1.
The interest of such formulations is an immediate algebraic version of the H-Theorem obtained

for (c0, c1) = (b0,b1), since J (b0,b1 : b0,b1) ≤ 0 by definition. A disadvantage is the non linearity
that shows up under the time and space derivatives. The Pomraning model can probably be
introduced as a further simplification of the bilinear form A.

4.2 P1 approximation
The P1 approximation consists of assuming that the distribution function f writes

f(t, ν,Ω) = f0(t, ν) + Ω.f1(t, ν), (4.3)

i.e. is affine with respect to Ω. The main advantages of the P1 approximation is that the moments
equations are easily constructed. Due to the polynomial angular dependence of f , an increase of
the order of the approximation is easily achieved. Moreover and as we will see in this part, even
if the source terms are nonlinear (quadratic in our case), they can be expressed in terms in the
moments. The two first angular moments of the distribution function are

E(t, ν) =
∫
S2
f(t, ν,Ω)dΩ,

F(t, ν) =
∫
S2
f(t, ν,Ω)ΩdΩ,

(4.4)

where we remind the reader that the measure over the sphere is normalized
∫
S2 dΩ = 1. The

frequency dependent P1 model is given in the following lemma.

Lemma 13 (Frequency dependent P1 model). The frequency dependent P1 approximation of the
Pomraning model (3.1) is

∂tE = σsν
−2 ∂

∂ν

[
ν4
(
T∂νE + E + E2 + 3(F,F)

)]
,

∂tF = σsν
−2 ∂

∂ν

[
ν4
(
T∂νF + F + 2EF

)]
− 4σs

3 F.
(4.5)

Proof. The definition of E and F together with the property
∫

ΩdΩ = 0 yields

f0 = E and f1 = 3F. (4.6)
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Integrating equation (3.1) over S2 and dividing by 4π, we obtain the equation

∂tE = σsν
−2 ∂

∂ν

[
ν4
(
T∂νE + E + 1

4π

∫
S2
f2dΩ

)]
.

Equations (4.3) and (4.6) gives ∫
S2
f2dΩ = E2 + 3(F,F),

and thus the equation on E is

∂tE = σsν
−2 ∂

∂ν

[
ν4
(
T∂νE + E + E2 + 3(F,F)

)]
. (4.7)

We now turn to the equation on F. Multiplying equation of (1.7) by Ω and integrating on S2,
one has

∂tF = σs

∫
S2×S2

(
1 + cos2 θ

)
Ω
(
f ′ − f

)
dΩ′dΩ +σsν−2 ∂

∂ν

[
ν4
(
T∂νF + F + 1

4π

∫
S2

Ωf2dΩ
)]
.

Equations (4.3) and (4.6) give after some elementary calculus
∫
S2×S2

(
1 + cos2 θ

)
Ω
(
f ′ − f

)
dΩ′dΩ = −4

3F,∫
S2

Ωf2dΩ = 2EF,

which concludes the proof.

It is easy to see that this P1 model preserves the Bose-Einstein distributions fµ (1.6). Indeed for
such distributions one has F = 0 and E = fµ, and these distributions satisfy T∂νfµ+fµ+f2

µ = 0.
From now on and until the end of this section, we take c = 1 in the transport term. The isotropic
case F = 0 can be seen as the P0 model, and reduces to the Kompaneets equation

∂tf = σsν
−2 ∂

∂ν

[
ν4
(
T∂νf + f

(
1 + f

))]
. (4.8)

We aim to study the differences between the Kompaneets equation and the P0 model. To this
end we use only on angular direction and consider that the friction damping − 4σs

3 F is now phe-
nomenological. It is written as −αF with α ≥ 0. This phenomenology can also be recovered
through a convenient renormalization. It yields the system

∂tE = σsν
−2 ∂

∂ν

[
ν4
(
T∂νE + E + E2 + 3F 2)

)]
,

∂tF = σsν
−2 ∂

∂ν

[
ν4
(
T∂νF + F + 2EF

)]
− αF.

(4.9)

4.3 Condensation of the P1 model with vanishing friction
In view of Caflish-Levermore results [CL86] (4.8) recalled in the Appendix, the goal of this part
is to understand how the anisotropic part of the radiation, modeled in (4.5) by the first moment
F, modifies the zero-th order moment E. On the one hand, it is clear that if F(t = 0) = 0, one
has for all t ≥ 0 E(t) = f(t), where f is the solution of the Kompaneets equation. Moreover, if
α >> 1, one can expect F to tends quickly vers 0 and thus obtain lim

t→∞
E(t) = f(t). One the

other hand, the long time behavior of the solution of the P1 model for α ≈ 1 or α << 1 is not
straightforward. This is the purpose of the forthcoming study. In particular we show in Theorem
14 that in the limit case α = 0 there exists solutions of the P1 model such that the number of
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photons at the initial stage is lower than the critical number N(f0) (A.2) and such that a Bose
condensation nonetheless appears in long time range.

Let us emphasize some properties of the P1 model. Firstly and as for the Kompaneets equation,
the model (4.9) preserves the number of photons. Indeed, the number of photons is defined by

N(t) =
∫
R+×S2

f(t, ν,Ω)ν2dνdΩ.

Since for the P1 model f = E + 3F.Ω, one easily obtains by using the P1 model (4.9)

d

dt
N(t) = d

dt

[ ∫
R+
E(t, ν)ν2dν

]
= 0,

assuming the correct flux conditions. What appears as a new property is the variation of the
energy of the P1 model in comparison with the P0 model. The energy is defined by

E(t) =
∫
R+×S2

f(t, ν,Ω)ν3dνdΩ.

Using the P1 model (4.5) and an integration by parts, one gets

d

dt
E(P1) = d

dt

[ ∫
R+
E(t, ν)ν3dν

]
= −

∫
R+

(
T∂νE + E + E2

)
ν4dν − 3

∫
R+

(F,F)ν4dν.

This equation is recast as

d

dt
E(P1) = d

dt
E(P0)− 3

∫
R+

(F,F)ν4dν,

with an obvious definition of E(P0). This shows that the anisotropic part of the radiation does
not modify the number of photons, but decreases the energy of the radiation.

We now turn to the main result of this part, which is concerned by the long time behavior of
the solution of the P1 model (4.9) in the case α = 0. We prove the following lemma, which shows
that the anisotropic part of the radiation exhibits different stationary solutions in comparison with
the Kompaneets equation in long time range. In the following N(f0) still refers to the number of
photons of the Bose-Einstein distribution with µ = 0. This comes from the very simple remark
that one can find a new set of variables, namely Z± = E ±

√
3F , which satisfies the Kompaneets

equation. The next result is the consequence of this diagonalization.

Theorem 14 (Asymptotic behavior of the P1 model in the case ). Assume a zero friction pa-
rameter α = 0. There exists solutions of the P1 model (4.9), whose total number of photons at
the initial time is less than the critical number of photons N(f0) (A.2) , such that a condensation
phenomena appears in long time range. For example if the initial conditions for the P1 model (4.9)
are chosen such that 

N(Ein) = 3
4N(f0),

N(F in) = 1
2
√

3
N(f0),

(which yields N(f in) = N(Ein + 3Ω.F in) = N(Ein) < N(f0)) then in long time range one has
lim
t→∞

E(t, .) = ν2 f0 − fµ
2 + N(f0)

8 δ0,

lim
t→∞

F (t, .) = ν2 f0 − fµ
2
√

3
+ N(f0)

8
√

3
δ0,

although N(Ein) < N(f0), where the parameter µ is such that N(fµ) = N(f0)/4.
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Proof. We set Z± = E ±
√

3F . Multiplying the second equation of (4.9) by
√

3 and adding and
subtracting to the first equation, one sees that Z± satisfies the Kompaneets equation

∂tZ
± = σsν

−2 ∂

∂ν

[
ν4
(
T∂νZ

± + Z±
(
1 + Z±

))]
.

The initial conditions for Z± are defined by (Z±)in = Ein ±
√

3F in. Using the definition of Ein
and F in, one gets N

(
(Z+)in

)
= 5

4N(f0) > N(f0). In the same way one obtains N
(
(Z−)in

)
=

1
4N(f0) < N(f0). One applies the result A.1 on Z+ and Z−, and gets

lim
t→∞

ν2Z+(t, .) = ν2f0 + N(f0)
4 δ0,

lim
t→∞

ν2Z−(t, .) = ν2fµ, µ > 0 s. t. N(fµ) = N(f0)
4 .

From the definition of Z±, one has E =
(
Z+ + Z−

)
/2 and F =

(
Z+ − Z−

)
/2
√

3, which yields
lim
t→∞

E(t, .) = ν2 f0 − fµ
2 + N(f0)

8 δ0,

lim
t→∞

F (t, .) = ν2 f0 − fµ
2
√

3
+ N(f0)

8
√

3
δ0, µ > 0 s. t. N(fµ) = N(f0)

4 ,

which is the announced result.

4.4 Numerical illustration
We present here a numerical scheme (see [BC03, LLPS84, DWLM09] for a literature on the topic)
designed for the frequency dependent P1 model (4.9) and we illustrate some theoretical results
with numerical illustrations for different values of the friction parameter α. We take σs = 1 and
T = 1.

4.4.1 A simple Finite Volume scheme

The frequency domain is [0, ν∗]. For 1 ≤ j ≤ N , we consider an irregular mesh defined by (N + 1)
points 0 = ν 1

2
< ... < νN+ 1

2
= ν∗. We define νj as the middle of the j-th frequency band, i.e.

νj = (νj− 1
2

+ νj+ 1
2
)/2 and we denote ∆νj its length. We also define the dual (j + 1

2 )-th frequency
band as the cell [νj , νj+1], which length is denoted ∆νj+ 1

2
. Since we consider the homogeneous

(in space) case, we consider the 1D case, and thus the first moment F is a scalar.
Due to the term ν−2 in front of the right hand side of the P1 model (4.9), it appears to be

easier to work on the variables U = ν2E and V = ν2F . Using this set of variables, the frequency
dependent P1 model writes

∂tU = ∂

∂ν

[
T

(
∂ν
(
ν2U

)
− 4νU

)
+ U

(
ν2 + U

)
+ 3V 2

)]
,

∂tV = ∂

∂ν

[
T

(
∂ν
(
ν2V

)
− 4νV

)
+ V + 2UV

)]
− αV.

(4.10)

We use a classical finite volume scheme with explicit Euler discretization of the time derivatives,
defined by 

Un+1
j − Unj

∆t =
Un
j+ 1

2
− Un

j− 1
2

∆νj
,

V n+1
j − V nj

∆t =
V n
j+ 1

2
− V n

j− 1
2

∆νj
− αV nj ,

(4.11)
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where the fluxes are defined by
Unj+ 1

2
= T

(
ν2
j+1U

n
j+1 − ν2

jU
n
j

∆νj+ 1
2

− 4νjUnj
)

+ Unj+1
(
ν2
j+1 + Unj+1

)
+ 3
(
V nj+1, V

n
j+1
)
,

V nj+ 1
2

= T

(
ν2
j+1V

n
j+1 − ν2

j V
n
j

∆νj+ 1
2

− 4νjV nj
)

+ V nj+1
(
ν2
j+1 + 2Unj+1

)
.

(4.12)

Numerically, the conservation of the total number of photons is obtained by setting Un
N+ 1

2
= Un1 =

0, for all n. To obtain the CFL condition, we write the system (4.10) as a drift diffusion system
on the variable W = (U, V ), that is

∂tW = ν2T

(
1 0
0 1

)
∂2
νW +

(
ν2 + 2U 6V

2V ν2 + 2U

)
︸ ︷︷ ︸

A

∂νW +
(

2(ν − T ) 0
0 2(ν − T )− α

)
︸ ︷︷ ︸

R

W. (4.13)

Studying the eigenvalues of the matrix A and R, denoted respectively Λ±A and Λ±R, one easily finds
Λ±A = ν2 + 2U ± 2

√
3V,

Λ+
R = 2(ν − T ),

Λ−R = 2(ν − T )− α,

The stability of the scheme is obtained under the following CFL condition

∆t sup
1≤j≤N

(
Tν2

j

∆ν2
j

+
max

(∣∣Λ±A,j∣∣)
∆νj

+ max
(∣∣Λ±R,j∣∣)) ≤ 1,

with obvious notations for Λ±A,j and Λ±R,j .

4.4.2 Setting of the simulations

We compare the solution of the P1 model with the solution of the P0 model for several value of the
friction coefficient α. All test cases are initialized with the same values, depicted in Figure 2 and we
take for the electron temperature T = 1. The mesh is composed of 800 cells. With the choice of the
variables (U, V ), the number of photons at the initial stage is simply

∫
R+ Udν = 1 ≤ N(f0) ≈ 2.4.

The long time behavior of the P0 model is thus a regular Planck distribution, and our aim is to
understand the influence of the first order moment V in the transitional and long time behavior
of the zero-th order moment U . The numerical scheme is (4.11-4.12). The results are displayed at
different times until a final time Tf > 0.

4.4.3 Strong friction α = 1

We solve the P1 system with α = 1 and we compare the zero-th order moment to the solution of
the P0 equation.

Figure 3 displays the zero-th order moment U and the solution of the Kompaneets equation
at different time. It shows that in the case α = 1, the anisotropic part of the radiation does not
sensibly modify the solution of the Kompaneets equation.

Figure 4 displays the evolution of the first order moment V . The friction term is dominant in
comparison to the Fokker-Planck term.

Figure 5 presents the time evolution of the total energy of the P0 and P1 models. As expected
(see equation (4.3)), the anisotropic part of the radiation decreases the energy, in comparison with
the Kompaneets equation. Nevertheless, and since the first order moment V is small in comparison
with the zero-th order moment, the variation in the total energy due to the anisotropic part is
negligible.
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Figure 2: Initialization of the P0 (Kompaneets) and P1 model.

Figure 3: Zero-th order moments (P0 and P1) versus frequency ν at different times, α = 1. The
curves are almost merged, as expected due to the strong relaxation. The P0 and P1 models
converge toward the same Planck distribution.

4.4.4 Mild friction α = 0.1

In this part we perform the same study than in the previous part, but we take a smaller value of
the friction coefficient α = 0.1.

Figure 6 displays the zero-th order moment U and the solution of the Kompaneets equation,
at different times. It shows in particular a different transitional regime. Contrary to the solution
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Figure 4: First order moment V versus frequency ν at different times, α = 1. The first order
moment has a Planck profile, decreasing with time due to the relaxation (α = 1).

Figure 5: Evolution of the total energy versus time, α = 1. Due to the strong relaxation, the
anisotropic part does not sensibly modifies the energy, in comparison with the Kompaneets equa-
tion.

of the P0 model, some photons are concentrated at the origin in a first time (one must zoom close
to the origin for the two intermediate pictures).

This can be explained by studying the first order moment V , see Figure 7. Indeed, we see a
competition between the thermalization term (Fokker-Planck term) and the friction term −αV .
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Figure 6: Zero-th order moments (P0 and P1) versus frequency ν at different times, α = 0.1. A
significant difference between the P0 and P1 models appears in a transitional regime. In long time,
the P0 and P1 converge toward the same Planck distribution.

In long time, the friction takes over for the thermalization, and one gets lim
t→∞

V = 0, and the P1

model then reduces to the Kompaneets equation. This explains that one obtains lim
t→∞

U = f , where
f is the solution of the Kompaneets equation. This transitional regime explains the significant
difference in the time evolution of the total energy between the P0 and P1 model displayed in
Figure 8.

4.4.5 No friction α = 0

We perform the same study but with α = 0. Since the initial conditions of Figure 2 satisfy the
hypothesis of Theorem 14, we expect to observe the convergence in long time of the zero-th order
moment U toward a Planck distribution plus a Dirac at the frequency ν = 0. As for the previous
numerical tests (α = 1 and 0.1), we study the evolution, as time goes on, of the zero-th order
moment U , compared to the solution of the Kompaneets equation, and the first order moment V .

Figure 9 displays the evolution of the solution of the Kompaneets equation (P0) and the zero-
th order moment of the P1 model. It shows the expected result, that is the convergence of the
zero-th order moment of the P1 model toward a Dirac function plus a Planck distribution.

In the same way, Figure 10 shows the convergence of the first order moment of the P1 model
toward a Dirac function plus a Planck function.

Finally, Figure 11 shows the time evolution of the total energy for both the Kompaneets
equation and the P1 model. It shows in particular that in this limit case α = 0, the introduction
of an anisotropic part in the radiation modifies the stationary state in long time range. Indeed
the conditions of a concentration of photons near the origin are changed by the anisotropy.
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Figure 7: First order moment V versus frequency ν at different times, α = 0.1. In short time
range, there is a small concentration near ν = 0. In long time the first order moment V tends to
zero.

Figure 8: Evolution of the total energy versus time, α = 0.1. The significant modification observed
in the transitional regimes between the P0 and P1 models leads to a decrease of energy for the P1
model.
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Figure 9: Zero-th order moments (P0 and P1) versus frequency ν at different times, α = 0. The first
order moment of the P1 model converges to a different solution with respect to the Kompaneets
equation. The final solution is the sum of a Planck type distribution and a concentration of
photons near ν = 0.

A Some theoretical results on the Kompaneets equation
A.1 Caflisch-Levermore results
Consider the Kompaneets equation with the boundary conditions

ν4
(
T∂νf + f + f2

)
= 0 at ν = 0 and ν =∞. (A.1)

Denote N(f0) the number of photons associated to the Bose-Einstein distribution with µ = 0,
defined by

N(f0) =
∫
R+

ν2

eν/T − 1
dν, (A.2)

where T is the electronic temperature. More generally, define for any function f its associated
number of photons by

N(f) =
∫
R+

∫
S2
fν2dνdΩ.

Caflisch and Levermore [CL86] studied and observed numerically the Bose condensation phenom-
ena, recalled thereafter

• If N(f in) ≤ N(f0), then ∃µ ≥ 0 s. t. lim
t→∞

ν2f(t, .) = ν2fµ(.).

• Else if N(f in) > N(f0), then lim
t→∞

ν2f(t, .) = ν2f0(.) +
(
N(f in)−N(f0)

)
δ0.

(A.3)

The parameter µ > 0 in the proof is such that N(f in) = N(fµ). This result is referred to the Bose
condensation phenomena; when the number of photons at the initial time is larger than a critical
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Figure 10: First order moment V versus frequency ν at different times, α = 0. The first order
moment converges toward the sum of a Planck type distribution and a concentration near ν = 0.

Figure 11: Evolution of the total energy versus time, α = 0. There is a substantial decrease of the
energy of the P1 model in comparison with the Kompaneets equation, and the convergence of the
numerical solution toward a different stationary solution.

number, the excess of photons is concentrated at the origin. This is illustrated in picture 13 with
numerical results obtained with the method discussed in Section 4.4. Additional numerical results
concerning the apparition of Dirac masses can be found in [ST95, ST97].

The Kompaneets equation is numerically solved for two different initial datum (picture 12):
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the first one satisfies N(f in) < N(f0), the second one N(f in) > N(f0). The curves represent the

Figure 12: Initial conditions for the Kompaneets equation (4.8), written as ν2f

quantity ν2 multiplied by the distribution function (and not the distribution function itself).

Figure 13: Numerical solutions of the Kompaneets equation (4.8) versus frequency ν. Convergence
to a Planck function (full line) in the case N(f in) < N(f0), and to a Planck function plus a Dirac
function concentrated near ν = 0 (dashed line) in the case N(f in) > N(f0).
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A.2 Escobedo-Herrero-Velazquez results
The condensation result of Caflish-Levermore was proved in [CL86] without discussions about the
flux conditions (A.1). It must be mentioned that Escobedo-Herrero-Velazquez proved [EMV98]
that there exists smooth nonnegative solutions of the Kompaneets equation, with arbitrarily small
values of N(f in), that may develop singularities near ν = 0 in finite time, so that the flux condition
(A.1) at ν = 0 is lost. They also proved that if one replaces the flux condition at ν = 0 (A.1) by
an estimate of the form

0 ≤ f(ν, T ) ≤ C

ν2 , as ν → 0, C > 0,

then the corresponding modified problem has a unique solution for all times t > 0.
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