N

N

Accelerated Gradient Boosting

Gérard Biau, Benoit Cadre, Laurent Rouviere

» To cite this version:

Gérard Biau, Benoit Cadre, Laurent Rouviere. Accelerated Gradient Boosting. Machine Learning,
2019, 108 (6), pp.971-992. 10.1007/s10994-019-05787-1 . hal-01723843v2

HAL Id: hal-01723843
https://hal.sorbonne-universite.fr /hal-01723843v2
Submitted on 5 Mar 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.sorbonne-universite.fr/hal-01723843v2
https://hal.archives-ouvertes.fr

Accelerated Gradient Boosting

G. Biau B. Cadre
Sorbonne Université, CNRS, LPSM Univ Rennes, CNRS, IRMAR
Paris, France Rennes, France
gerard.biau@upmc.fr benoit.cadre@ens-rennes.fr

L. Rouviere
Univ Rennes, CNRS, IRMAR
Rennes, France
laurent.rouviereQuniv-rennes2.fr

Abstract

Gradient tree boosting is a prediction algorithm that sequentially produces
a model in the form of linear combinations of decision trees, by solving an
infinite-dimensional optimization problem. We combine gradient boosting
and Nesterov’s accelerated descent to design a new algorithm, which we call
AGB (for Accelerated Gradient Boosting). Substantial numerical evidence
is provided on both synthetic and real-life data sets to assess the excellent
performance of the method in a large variety of prediction problems. It is
empirically shown that AGB is less sensitive to the shrinkage parameter and
outputs predictors that are considerably more sparse in the number of trees,
while retaining the exceptional performance of gradient boosting.

1 Introduction

Gradient boosting (Friedman et al., 2000; Friedman, 2001, 2002) is a learning procedure that
combines the outputs of many simple predictors in order to produce a powerful committee
with performances improved over the single members. The approach is typically used with
decision trees of a fixed size as base learners, and, in this context, is called gradient tree
boosting. This machine learning method is widely recognized for providing state-of-the-art
results on several challenging data sets, as pointed out by Chen and Guestrin (2016). Boosted
decision trees are generally regarded as one of the best off-the-shell prediction algorithms
we have today, with performance at the level of the Lasso (Tibshirani, 1996) and random
forests (Breiman, 2001), to name only two competitors.

Gradient boosting originates in Freund and Schapire’s work (Schapire, 1990; Freund, 1995;
Freund and Schapire, 1996, 1997) on weighted iterative classification. It was complemented
by several analyses by Breiman (1997, 1998, 1999, 2000, 2004), who made the fundamental

observation that Freund and Schapire’s AdaBoost is in fact a gradient-descent-type algorithm
in a function space, thus identifying boosting at the frontier of numerical optimization
and statistical estimation. Explicit regression and classification boosting algorithms were
subsequently developed by Friedman (2001, 2002), who coined the name “gradient boosting’
and paid a special attention to the case where the individual components are decision trees.
Overall, this functional view of boosting has led to the development of boosting algorithms
in many areas of machine learning and statistics beyond regression and classification (e.g.,
Blanchard et al., 2003; Bithlmann and Yu, 2003; Lugosi and Vayatis, 2004; Zhang and Yu,
2005; Bickel et al., 2006; Bithlmann and Hothorn, 2007).

2

In a different direction, the pressing demand of the machine learning community to build
accurate prediction mechanisms from massive amounts of high-dimensional data has greatly
promoted the theory and practice of accelerated first-order schemes. In this respect, one of
the most effective approaches among first-order optimization techniques is the so-called
Nesterov’s accelerated gradient descent (Nesterov, 1983). In a nutshell, if we are interested
in minimizing some convex function g(x) over R?, then Nesterov’s descent may take the
following form (Beck and Teboulle, 2009; Bubeck, 2015): starting with xo = yg, inductively
define

X411 = Y—wVe(n) (1)

Ve = (1= %)x1 + %,

where w is the step size,

1+4/14+402 _
do=0, = - —

, and = .
2 & At

In other words, Nesterov’s descent performs a simple step of gradient to go from y; to x;. 1,
and then it slides it a little bit further than x; 1 in the direction given by the previous point
x;. As acknowledged by Bubeck (2013), the intuition behind the algorithm is quite difficult
to grasp. Nonetheless, Nesterov’s accelerated gradient descent is an optimal method for
smooth convex optimization: the sequence (x;); defined in (1) recovers the minimum of g
at a rate of order 1/ 12 (e.g., Bubeck, 2015, Theorem 3.19), in contrast to vanilla gradient
descent methods, which have the same computational complexity but can only achieve a rate
in 1/t. Throughout the document, we will use form (1) for Nesterov’s descent, keeping in
mind that other choices are possible but less adapted to the boosting context, as we will see
later. Since the introduction of Nesterov’s scheme, there has been much work on first-order
accelerated methods (see, e.g., Nesterov, 2004, 2005, 2013; Su et al., 2016, for theoretical
developments, and Tseng, 2008, for a unified analysis of these ideas). Notable applications
can be found in sparse linear regression (Beck and Teboulle, 2009), compressed sensing
(Becker et al., 2011), distributed gradient descent (Qu and Li, 2016), and deep and recurrent
neural networks (Sutskever et al., 2013).

In this article, we present AGB (for Accelerated Gradient Boosting), a new tree boosting
algorithm that incorporates Nesterov’s mechanism (1) into Friedman’s original procedure
(Friedman, 2001). Substantial numerical evidence is provided on both synthetic and real-life
data sets to assess the excellent performance of our method in a large variety of prediction
problems. The striking feature of AGB is that it enjoys the merits of both approaches:

2

(i) Its predictive performance is comparable to that of standard gradient tree boosting;

(i) Tt takes advantage of the accelerated descent to output models which are remarkably
much more sparse in their number of components.

Item (ii) is of course a decisive advantage for large-scale learning, when time and storage
issues matter. To make the concept clear, we show in Figure 1 typical test error results by
number of iterations and shrinkage (step size), both for the standard (top) and the accelerated
(bottom) algorithms. As is often the case with gradient boosting, smaller values of the
shrinkage parameter require a larger number of trees for the optimal model, when the test
error is at its minimum. However, if both approaches yield similar results in terms of

prediction, we see that the optimal number of iterations is at least one order of magnitude
smaller for AGB.

GB
0.254
1
l]
3
0204 |,
1
1
I
|}
s
l [}
1
0154 1 %
| ‘\‘
@ Voo
o Y
= \ “ .
s N\ N e T T e o shrinkage
E 0.101 0.001
o --
< AGB 0.01
[}
-+ 0.05
% 0.251 I -
(@] *
o) I -’ 0.1
Es] P
K | | /.-‘
< l ‘4'
’
|l I e
0209 | I .
1 I Pid
] -’
L I .
1 -+
'n [} SRl
| | I "‘
-] 4'
0.15 1TV; e
kil s -*”
e
ryv e
|l '4
o\
0.104
0 1000 2000 3000 4000 5000
iterations

Figure 1: Adaboost exponential loss (estimated on a test data set) by number of iterations

for standard gradient boosting (top) and AGB (bottom). The data are generated according to
Model 5 with n = 5 000 observations (see page 9).

The paper is organized as follows. In Section 2, we briefly recall the mathematical/statistical
context of gradient boosting, and present the principle of the AGB algorithm. Section 3 is

devoted to analyzing the results of a battery of experiments on synthetic and real-life data
sets. We offer an extensive comparison between the performance of Friedman’s gradient tree
boosting and AGB, with a special emphasis put on the influence of the learning rate on the
size of the optimal models. Section 4 summarizes the main results and discusses research
directions for future work. The code used for the simulations and the figures is available at
https://github.com/lrouviere/AGB.

2 (Accelerated) gradient boosting

2.1 Gradient boosting at a glance

Let 2, = {(X1,Y1),...,(Xy,Y,)} be a sample of i.i.d. observations, taking values in R x %
Throughout, 2 C R is either a finite set of labels (for classification) or a subset of R, (for
regression). The learning task is to construct a predictor F : R¢ — R that assigns a response
to each possible value of the independent random observation X, . In the context of
gradient boosting, this general problem is addressed by considering a class .% of elementary
functions f: RY — R (called the weak or base learners), and by minimizing some empirical
risk functional

Cu(F) = y(F(X:),Y;) 2)

1

S| =

n

1

over the linear combinations of functions in .%. Thus, we are looking for an additive solution
of the form F,, = Z;T:o oy f;, where (o, ...,0r) € RT+! and each component f; is picked in
the base class .%.

The function y : R x %" — R is called the loss. It is assumed to be convex and continuously
differentiable in its first argument. It measures the cost incurred by predicting F (X;) when
the answer is ¥;. For example, in the least squares regression problem, y(x,y) = (y —x),
and

Cu(F) =

S| =

(v~ F(X)
=1

1

In the +1-classification problem, the final classification rule is 41 if F(x) > 0 and —1
otherwise. In this context, two classical losses are y(x,y) = e>* (Adaboost exponential
loss) and y(x,y) = log, (14 e™*) (logit loss, where log, is the binary logarithm).

In the present document, we take for .# the collection of all binary decision trees in
R using axis parallel cuts with k (small) terminal nodes (or leaves). Let 14 denote the
indicator function of a set A. Then each f € .% takes the form f = Z’;Zl Bl A;» Where
(Bi,...,By) € RFand {A,... ,A;} is a tree-structured partition of R? (Devroye et al., 1996,
Chapter 20). An example of regression tree fitted with the R package rpart.plot with
k = 3 leaves in dimension d = 2 is shown in Figure 2.

4

https://github.com/lrouviere/AGB

1.2
100%

—— e} X2 >= 0.76-F}——

1.5
73%

——X1 < 0.24—

0.1 0.21 1.9
27% 17% 56%

Figure 2: A regression tree in dimension d = 2 with k = 3 leaves.

Let us get back to the minimization problem (2) and denote by lin(.#) the set of all linear
combinations of functions in .#, our basic collection of trees. So, each F € lin(.%) is
an additive association of trees, of the form Fr = Z;T:o ¢ f;. Finding the infimum of the
functional C, over lin(.%) is a challenging infinite-dimensional optimization problem, which
requires an algorithm. This is where gradient boosting comes into play by sequentially
constructing a linear combination of trees, adding one new component at each step. This
algorithm rests upon a sort of functional gradient descent, which we briefly describe in the
next paragraph. We do not go too much into the mathematical details, and refer to Mason
et al. (1999, 2000) and Biau and Cadre (2017) for a thorough analysis of the mathematical
forces in action.

Let J; denote the Dirac measure at z, and let 4, = (1/n) Y.l x, y,) be the empirical measure
associated with the sample Z,. Clearly,

CH(F) = EW(F(X)aY)’

where (X,Y) denotes a random pair with distribution p, and the symbol IE denotes the
expectation with respect to u,. The theoretical version of C,, is

C(F) =Ey(F(X1), 1),

where now the expectation is taken with respect to the distribution of (X1,Y;). To unify
the notation, we let for now (X,Y) be a generic pair of random variables with distribution
Ux vy, keeping in mind that uy y may be the distribution of (Xj,Y;) (theoretical risk) or
the empirical measure i, (empirical risk). We let ty be the distribution of X, L2 (ux) the
vector space of all measurable functions f : R¢ — R such that [|f|?duy < o, and denote
by (-,")uy and || - || 4 the corresponding norm and scalar product. Thus, with this notation,

5

our problem is to minimize the quantity

C(F) = Ey(F(X),Y)
over the linear combinations of functions in the given subset .% of L* ().

As we have seen earlier, it is assumed that, for each y € %/, the function y(-,y) is convex
and continuously differentiable. In this setting, the functional C is differentiable at any
F € L?(uy) in the direction G € L?(uy), with differential

dC(F;G) = (VC(F),G)

where VC(F)(x) := [oy W(F (x),y)ly|x—x(dy) is called the gradient of C at F (the symbol
d, means partial derivative with respect to the first component and Hy|x 1s the conditional
distribution of Y given X).

Suppose now that we have at step ¢ a function F; € lin(.#) and wish to find a new f; | € F
to add to F; so that the risk C(F; + wf;;) decreases at most, for some small value of
w. Viewed in function space terms, we are looking for the direction f;,| € .% such that
C(F; +wf;+1) most rapidly decreases. One approach might be to take f;11(-) = —VC(F)(-),
the opposite of the gradient of C at F; (this is a function over R?), and update according to

Fe1 = F —wVC(F). (3)

However, since we are restricted to pick our new function in .%, this will in general not be a
possible choice. The strategy is to choose the new f;. | by a least squares approximation of
the function —VC(F;)(-), i.e., to take

fis1 € argming 5| — VC(F) = £, -)
In the empirical setting, where C = C,, and uy is the empirical measure with respect to
Xi,...,X,, it is easy to see that the approximation (4) takes the form
. 1 ¢ 2
fir1 € argmmfegz Z —VCu(F)(X;) — f(X))", 5)

where VC,(F)(X) oW (F(X;),Y;). For example, when y(x,y) = (y —x)?/2, then
—VC,(F)(Xi) = F;(X;), and the algorithm simply fits f;+| to the residuals ¥; — F;(X;)
at step ¢.

Iteration (3) together with approximation (5) form the core of the gradient boosting principle.
After T iterations, the method outputs an additive expansion of the form Fr =¥ o, f;,
where (0, ..., o) is a sequence of weights and (fp,..., fr) is a sequence of trees in .%.
The parameter w in (3) is the step size of the gradient descent. It is eventually allowed
to change at every iteration and should be carefully chosen for convergence guarantees,
as shown for example in Biau and Cadre (2017). Importantly, from a practical point of
view, finding the optimum in (5) is a non-trivial computational problem, which necessitates
a strategy. In Friedman’s gradient tree boosting algorithm (Friedman, 2001), one uses a
CART-style top-down recursive partitioning to compute the minimum at each iteration,
together with several regularization techniques to reduce the eventual overfitting. Some of
these features are incorporated in our accelerated version, which is presented in the next
section.

2.2 The AGB algorithm

The pseudo-code of AGB is summarized in the table below.

AGB algorithm

1: Require The data set &,, T > 1 (number of iterations), k > 1 (number of terminal
nodes in the trees), 0 < v < 1 (shrinkage parameter).

2: Initialize Fy = Go € argmin, Y, y(z,Y;), A0 =0, 1 = 1.
3: fort=0to (T—1)do

4. Fori=1,...,n, compute the negative gradient instances

Zi7t+1 = _Vcn(Gt) (Xi)-

5. Fit a regression tree to the pairs (X;,Z; ;4 1), giving terminal nodes R i 1< j <k

6: For j=1,... k, compute

wisyl €argming o Y W(Gi(X;) +w,Y).
X,ERJ'J+1

7. Update
(@) Fa=G+vYi_wjilg,,,,

0) G =1 =%)F1 + 1k

14,/1+4A2 2
(c) %:Tﬂ,gﬁlz”—v?%,

(d) "= lﬁf_ﬁt ’

8: end for

9: Output Fr.

We see that the algorithm has two inner functional components, (F;); and (Gy);, which
correspond respectively to the vectorial sequences (x;); and (y;), of Nesterov’s acceleration
scheme (1). Observe that the sequence (G;), is internal to the procedure while the linear
combination output by the algorithm after 7 iterations is Fr. Line 2 initializes to the optimal
constant model. As in Friedman’s original approach, the algorithm selects at each iteration,
by least-squares fitting, a particular tree that is in most agreement with the descent direction
(the “gradient”), and then performs an update of G;. The essential difference is the presence
of the companion function sequence (G;);, which slides the iterates (F;); according to the
recursive parameters A, and ¥; (lines 7 (b)-(d)).

7

Let fi+1 = ZIJ‘.ZI Bji+11 R;,4 e the approximate-gradient tree output in line 6 of the algo-
rithm. The next logical step is to perform a line search to find the step size and update the
model accordingly, as follows:

n
wei1 € argmin,,_o ¥ Y(Gi(Xi) +wfip1(Xi).Yo), Frr =G+ wepi firn.
i=1
However, following Friedman’s gradient tree boosting (Friedman, 2001), a separate optimal
value w;, 11 is chosen for each of the tree’s regions, instead of a single w; | for the whole
tree. This operation gives more latitude to the additive model and is known to usually
improve the quality of the fit. Thus, the coefficients 8; ;11 from the tree-fitting procedure

can be then simply discarded, and the model update rule at epoch ¢ becomes, for each
j=1,... .k,

k
W1 € argmin,,. Z v(Gi(Xi)+wY), Fi1=Gi+v Z Wirr1lR;,
Xi€R; 141 J=1

(lines 6 and 7 (a)). We also note that the contribution of the approximate gradient is scaled
by a factor 0 < v < 1 when it is added to the current approximation. The parameter v can
be regarded as controlling the learning rate of the boosting procedure. Smaller values of v
(more shrinkage) usually lead to larger values of T for the same training risk. Therefore, in
order to reduce the number of trees composing the boosting estimate, large values for v are
required. However, too large values of v may break the gradient descent dynamic, as shown
for example in Biau and Cadre (2017, Lemma 3.2). Indeed, this lemma indicates that for a
sufficiently smooth loss function y/(x,y) the difference C(F;) — C(F;) decreases as soon
as v is small enough. All in all, both v and T control prediction risk on the training data and
these parameters do not operate independently. This tradeoff issue is thoroughly explored in
the next section.

3 Numerical studies

This section is devoted to illustrating the potential of our AGB algorithm and to highlighting
the benefits of Nesterov’s acceleration scheme in the boosting process. Synthetic models
and real-life data are considered, and an exhaustive comparison with standard gradient
tree boosting is performed. For the implementation of Friedman’s boosting, we used the R
package gbm, a description of which can be found in Ridgeway (2007). These two boosting
algorithms are compared in the last subsection with the Lasso (Tibshirani, 1996) and random
forests (Breiman, 2001) methods, respectively implemented with the packages glmnet and
randomForest.

3.1 Description of the data sets

The algorithms were benchmarked on both simulated and real-life data sets. For each of the
simulated models, we consider two designs for X = (Xj,...,X,;): Uniform over (—1,1)?
(“Uncorrelated design™) and Gaussian with mean 0 and d X d covariance matrix X such
that X;; = 2~ li=l (“Correlated design”). The following five models cover a wide spectrum

8

of regression and classification problems. Models 1-3 and 5 come from Biau et al. (2016).
Model 4 is a slight variation of a benchmark model in Hastie et al. (2009). Models 1-3
are regression problems, while Model 4 and 5 are +1-classification tasks. Models 2-4 are
additive, while Model 1 and 5 include some interactions. Model 3 can be seen as a sparse
high-dimensional problem. We denote by Z,, ;2 a Gaussian random variable with mean u

and variance 2.

Model 1. n=1000,d =100, Y = X; X2 + X3 — XaX7 + XsX10 — XZ + Z0,0.5-
Model 2. n=800,d = 100, Y = —sin(2X;) + X5 + X5 —exp(—X4) + Zo0 5-
Model 3. 7= 1000, d =500,Y = X; +3X; — 2exp(—Xs) + X.

Model 4. n =2000, d = 30,

{ 21y10 y2.35—1 foruncorrelated design
Y = j=14 72

2]l):}glsz>9.34 —1 for correlated design.

Model 5. n=1500,d =50,Y =21 1.

X1+X£+X9+Sin(X12X18)+Z()"0,1 >0.38

We also considered the following real-life data sets from the UCI Machine Learning
repository: Adult, Internet Advertisements, Communities and Crime, Spam, and Wine.
Their main characteristics are summarized in Table 1 (a more complete description is
available at the address https://archive.ics.uci.edu/ml/datasets.html).

|Dataset|| n | d | Outputy |
Adult 30162 | 14 binary

Advert. || 2359 | 1431 binary
Crime 1993 102 | continuous
Spam 4601 57 binary
Wine 1559 11 continuous

Table 1: Main characteristics of the five real-life data sets used in the experiments.

For each data set, simulated or real, the sample is divided into a training set (50%) Pirain to fit
the method; a validation set (25%) %4 to select the hyperparameters of the algorithms; and
a test set (25%) Zest on which the predictive performance is evaluated. We considered two
loss functions for both standard boosting and AGB: the least squares loss W(x,y) = (y —x)?
for regression and the Adaboost loss y(x,y) = e for £ 1-classification. We also tested the
logit loss function y(x,y) =log, (14 e™¥). Since the results are similar to the Adaboost
loss they are not reported.

In the boosting algorithms, the validation set is used to select the number of components of
the model, i.e., the number of iterations performed by the algorithm. Thus, denoting by Fr

9

https://archive.ics.uci.edu/ml/datasets.html

the boosting predictor after 7 iterations fitted on Py.i,, we select the T that minimizes

Y, w(Fr(X),%). (6)

i€ Dyal

ﬂgval

For both standard gradient tree boosting and AGB, we fit regression trees with two terminal
nodes. We considered five fixed values for the shrinkage parameter v (1e — 05, 0.001, 0.01,
0.1, and 0.5), and fixed an arbitrary (large) limit of 7 = 10000 iterations for the standard
boosting and T = 2500 for AGB. All results are averaged over 100 replications for simulated
examples, and over 20 independent permutations of the sample for the real-life data.

3.2 Gradient boosting vs. accelerated gradient boosting

In this subsection, we compare the standard gradient tree boosting and AGB algorithms in
terms of minimization of the empirical risk (2) and selected number of components 7*.
Figure 3 shows the training and validation errors for Friedman’s boosting and AGB, as a
function of the number of iterations.

mse

2.0+

1.54

1.0

0.0+

Model 1

-
-
g

500

1000
iterations

1500 2000

mse

1.00 -

0.75 -

0.25 -

Model 5

-
N e - -

1000 2000
iterations

3000

Figure 3: Training (solid lines) and validation (dashed lines) errors for standard gradient
boosting (red) and AGB (blue) for Model 1 (left) and Model 5 (right). Shrinkage parameter
v is fixed to 0.01.

As it is generally the case for gradient boosting (e.g., Ridgeway, 2007), the validation error
decreases until predictive performance is at its best and then starts increasing again. The
vertical magenta line shows the optimal number of iterations 7*, selected by minimizing
(6). We see that the validation rates at the optimal 7" are comparable for AGB and the
original algorithm. However, AGB outperforms gradient boosting in terms of number of
components of the output model, which is much smaller for AGB. This is a direct consequence
of Nesterov’s acceleration scheme. This remarkable behavior is confirmed by Figures 4-6,

10

where we plotted the relationship between predictive performance, the number of iterations,
and the shrinkage parameter. On the left side of each figure, we show the boxplots of the
test errors of the selected predictors Fr+, i.e.,

1
ﬂ@t . Z W(FT*(Xi)ayi), (7)
EStic Drest

as a function of the shrinkage parameter v. The right sides depict the boxplots of the optimal
number of components 7.

These three figures convey several messages. First of all, we notice that the predictive
performances of the two methods are close to each other, independently of the data sets
(simulated or real). Moreover, in line with the comments of Hastie et al. (2009, Chapter 10),
smaller values of the shrinkage parameter v favor better test error. Indeed, for all examples
we observe that the best test errors are achieved for v smaller than 0.1. However, for such
values of v, it seems difficult for standard boosting to reach the optimal 7 in a reasonable
number of iterations, and 10 000 iterations are generally not sufficient as soon as Vv is less
than 0.01. The accelerated algorithm allows to circumvent this problem since, for each
value of v, the optimal model is achieved after a number of iterations considerably smaller
than with standard boosting. Besides, AGB is less sensitive to the choice of v. These two
features are clear advantages since, in practice, one has no or few a priori information on the
reasonable value of v, and the usual strategy is to try several (often, small) values of the
shrinkage parameter until the validation error is the lowest. Let us finally note that it may be
surprising, at first sight, to see the validation error rise so quickly once the optimum 7 is
reached (Figure 3). However, this rapid increase must be appreciated in view of the equally
rapid decrease of the training error. In fact, AGB overfits extremely fast and the validation
error, for fixed v, increases just as quickly.

Of course, the benefit of having sparser models is striking when we are faced with large-
scale data, i.e., when iterations have a computational price. To illustrate this point, Table
2 provides the computation times to fit a tree with the default parameters of the rpart
package. The computations have been performed on a laptop with 2.8 GHz processor and
16Gb of RAM memory. We clearly see that it is more and more expensive to fit a tree as
the sample size and/or the dimension of the ambient space increase. It is in this large-scale
context that AGB can have a decisive advantage over regular gradient boosting.

" d 10 100 | 1000

1000 |} 0.02 | 0.18 1.98
10000 | 0.20 | 2.35 | 26.73
100 000 || 3.81 | 39.23 | 412.34

Table 2: Duration in seconds to fit a tree with rpart as a function of n (sample size) and d
(dimension). Results are averaged over 100 repetitions.

11

Model 1, error Model 1, iterations
1.2 , , 1 100001 ==
1.14 7500 1
101 5000
0.91 | .
084 2500 T . *
0.7+— . . — 01— R S
1le-05 0.001 0.01 0.1 0.5 1le-05 0.001 0.01 0.1 05
Model 2, error Model 2, iterations
25 100004 = -
2.0 é 7500 1
1.5 . 5000 - A
1.0' . 1 . s o o 2500' -
0'5- + T T T +|+ O- T |-.- $|-.- T T
1le-05 0.001 0.01 0.1 0.5 1le-05 0.001 0.01 0.1 05
Model 3, error Model 3, iterations
100004 == — °
3-
+ =
21 5000
11 25004 =—
0- o —* # H _+ O- I I— I_ *I* :
1e—05 0.001 0.01 0.1 0.5 le-05 0.001 0.01 0.1 05
Model 4, error Model 4, iterations
104 e g 100001 = — —
0.8- — i $ 75004
% ? 2500 —
0.4- %
0.2 $ 01_e = = —p— -.-—
' 1e-05 0001 001 01 1le-05 0.001 0.01 0.1 05
Model 5, error Model 5, iterations
100001 =— ——
0.9- o
0.8' 7500'
0.71 5000 - '
0 - % $$ % % 25009 =
l 0- T I* I* T T
le- 05 0001 001 1le-05 0.001 0.01 0.1 05
shrinkage

Figure 4: Boxplots of the test error (7) (left) and selected numbers of iterations (right), as
a function of the shrinkage parameter v for standard gradient boosting (red, left) and AGB
(blue, right). Results are presented for simulated models with uncorrelated design.

12

Model 1, error Model 1, iterations

0 10000 ===
10.0 75001 -
751 5000 1 é
T4 b 4] 3 -
25 01— i
le-05 0001 001 01 1e-05 0001 001 01 05
Model 2, error Model 2, iterations
] 100004 == -]
ol 1 7500
AR T R T A BRI B
51 N D B B B ;# 25004 v
i éé ol . -
le05 0001 001 071 05 le05 0000 001 01 05
Model 3, error Model 3, iterations
0 00—
607 ! 75001

40-¢. S w . .e | 50007

e LA T LT o

0 T T T T T T T T T
le-05 0.001 0.01 0.1 0.5 le-05 0.001 0.1 0.1 05
Model 4, error Model 4, iterations
1.0 = . 10000 — —_— —
08{ = == . $ 75001
0.6 1 5000 -
02— é 01— : ==L
le-05 0. 001 0. Ol O 1 le-05 0.001 0.1 0.1 05
Model 5, error Model 5, iterations
104 == 10000 — —
0.84 7500 1 ,
06- 5000 - $
- + ; ! ; ! # 2500 —
4 0 e e e
1e 05 0001 001 le-05 0.001 0.1 0.1 05
shrinkage

Figure 5: Boxplots of the test error (7) (left) and number of selected iterations (right) as a
function of the shrinkage parameter v, for standard gradient boosting (red, left) and AGB
(blue, right). Results are presented for simulated models with correlated design.

13

Adult, error Adult, iterations
08 —— 10000 = — -
' 7500 1
0.7 5000 :
0.6 éé 1
+ : $ ‘* 2500 — é
0.5- 0+, $ —— —
1e 05 0. 001 0. 01 0 1 le-05 0.001 0.1 0.1 05
Advert, error Advert, iterations
° 100004 == -
30+
7500
201) 5000
101 : ‘ 25004 — =—
0- o 3 Il I HEN | 3 . 8 04 —— —
le-05 0.001 0.01 0.1 0.5 le-05 0.001 0.1 0.1 05
Crime, error Crime, iterations
100004 == -
0051 dﬂ 7500 :
0.049 5000 .
0031 = | 2500{ == e
002- I* % % % *I O- T I+ I* = T T
le-05 0.001 0.01 0.1 0.5 le-05 0.001 0.1 0.1 05
Spam, error Spam, iterations
- g 10000 — — t
0.8+ . 7500 1
0.6- . ¢ 5000
b K E;é é 2500 1 — o
0.4 $ E:Eé é 04 - —t—
le-05 0.001 0.01 0.1 0.5 le-05 0.001 0.1 0.1 05
Wine, error Wine, iterations
0.7 10000 — — 1
0.6' $ 7500' °
05- 5000 -
Lk dp 45|) -
0.41 04) T J-n_ al—
1e 05 0. 001 0. 01 le-05 0.001 0.1 0.1 05
shnnkage

Figure 6: Boxplots of the test error (7) (left) and number of selected iterations (right) as a
function of the shrinkage parameter v, for standard gradient boosting (red, left) and AGB

(blue, right). Results are presented for real-life data sets.

14

3.3 Time-varying vs. fixed weights

We briefly discuss in this subsection the influence of the weights (%), (line (7)-(d) of the
algorithm). As we have seen in the introduction, the current choice guarantees a fast conver-
gence rate in 1/ 1> when the function g to be minimized is convex and sufficiently smooth
(Bubeck, 2015, Theorem 3.19). Remarkably, if g is assumed to be strongly convex, then
Nesterov’s method can achieve a much faster (exponential and optimal) rate of convergence,
using however a different set of weights independent of the iteration ¢ (Bubeck, 2015, Theo-
rem 3.18). It turns out however that most of the losses y/(x,y) used in gradient boosting are
convex but not strongly convex in x (e.g., the Adaboost exponential and the logit losses), and
it is therefore a safe choice to use the “generic” weights (7), defined in (7)-(d). This option
is all the more recommended as the AGB algorithm is not underpinned by any mathematical
theory to date (see the discussion in Section 4). However, for regression problems, the least
squares loss w(x,y) = (y —x)? is strongly convex, and it is thus tempting to operate with
the fixed weights of Bubeck (2015, Theorem 3.18). This simply changes step (7)-(b) of the

AGB algorithm into
VE—1 JE—1
Vi

o= (14 LE), VEL
s VE+1 VE+1

where k¥ = 1/(2v). We call this new algorithm AGB2. Figure 7 presents results for the
simulated regression Models 1-3. We see that the estimated errors are of the same order for
AGB and AGB2. However, AGB requires considerably less iterations to minimize the validation
error (6), thus drastically reducing the model complexity.

F,

3.4 Comparison with the Lasso and random forests

We compare in this last subsection the performance of the standard and accelerated boosting
algorithms with that of the Lasso and random forests, respectively implemented with the
R packages glmnet and randomForest. As above, the number of components 7* of the
boosting predictors is selected by minimizing (6). The shrinkage parameter of the Lasso
(parameter 1ambda in glmnet) and the number of variables randomly sampled as candidates
at each split for the trees of the random forests (parameter mtry in randomForest) are
selected by minimizing the mean squared error (regression) and the misclassification error
(classification) computed on the validation set. The R-package caret was used to conduct
these minimization problems. The prediction performance of each predictor F' was assessed
on the test set by the mean squared error @ Yic g, (Yi — F(X;))? for regression problems,

and (7) the misclassification error m Yic % LF(x;)v; and (ii) the area under ROC curve
(AUC) for classification problems (computed on the test set).

Table 3 shows the test errors for the regression problems, while Tables 4 and 5 display
misclassification errors and AUC for classification tasks. All results are averaged over 100
replications for simulated examples and over 20 permutations of the sample for real-life
data sets.

As might be expected, the results depend on the data sets, with an advantage to boosting
algorithms, which are often the first and perform uniformly well. Besides, even if there
is no clear winner between traditional boosting and AGB, we still find that AGB is weakly

15

Model 1, error Model 1, iterations
. 2500 .

1.1
2000

101 1500
0.9+ 1000
0.8- 500 R
* _*
0.7+ : : : 0 ;) :
0.001 0.01 0.1 0.001 0.01 0.1

Model 2, error Model 2, iterations |
. 2500 |

0.9+

2000

1500

0.8 : : . ‘

0.7+

1000 ‘

0.6-
500 .
—

0.5 —t— $

0 —
0.001 0.01 0.1 0.001 0.01 0.1

Model 3, error Model 3, iterations |
2500 — | 5

0.20-

2000

0.15-

1500 |

1000

0
0.001 0.01 0.1 0.001 0.01 0.1
shrinkage

Figure 7: Boxplots of the test error (7) (left) and number of selected iterations (right) as a
function of the shrinkage parameter v, for AGB (blue, left) and AGB2 (green, right). Results
are presented for simulated Models 1-3, with uncorrelated design.

sensitive to the choice of v and leads to more parsimonious models (7 in the tables) for
both regression and classification problems, and independently of the data set.

4 Conclusion and discussion

In this paper, we have proposed an algorithm named Accelerated Gradient Boosting (AGB). It
is based on Friedman’s gradient tree boosting algorithm (Friedman, 2001), and incorporates
the Nesterov’s accelerated gradient descent technique (Nesterov, 1983) to the gradient step.
Extensive numerical experiments were conducted that reach the following conclusion: AGB
achieves a similar level of predictive error as gradient boosting, but uses far less components

16

GB AGB Lasso RF
v ‘ le-05 | 0001 | 001 | 01 | 05 H le-05 | 0001 | 001 | 01 | 05 H H ‘
Model 1 (u) m. 1011 0.923 [0926 | 0.927 | 0.930 0.924 | 0.927 [0.926 | 0.929 | 0.920 1.021 0.922
sd. 0.082 0.075 | 0.076 | 0.076 | 0.079 0.076 | 0.077 | 0.074 | 0.074 | 0.081 0.084 0.078
T* 10000 | 7924 981 99 11 2178 247 73 18 7
Model 2 (u) m. 1.883 0.642 | 0.621 | 0.621 | 0.650 0.632 | 0.621 | 0.621 | 0.638 | 0.794 0.677 0.756
sd. 0.202 0.073 | 0.075 | 0.074 | 0.079 0.069 | 0.072 | 0.072 | 0.073 | 0.090 0.077 0.086
T* 10000 | 9989 | 2206 214 26 2488 288 91 26 14

Model 3 (u) m. 2.983 0.318 0.037 | 0.040 | 0.119 0.308 | 0.080 | 0.078 | 0.125 0.337 0.948 0.587
sd. 0.221 0.039 0.007 | 0.008 | 0.015 0.042 | 0.019 | 0.017 | 0.020 | 0.060 0.067 0.068

T* 10 000 10000 7936 956 97 2 500 627 187 49 29

Model 1 (¢) m. 8.316 4.483 4.047 | 4.051 4.220 4.529 | 4.141 4133 | 4252 | 5354 8.549 4.163
sd. 1.143 0.668 0.557 | 0559 | 0.573 0.669 | 0.564 | 0.566 | 0.575 0.694 1.154 0.623
T 10 000 10000 | 3413 330 47 2 500 387 120 32 12

Model 2 (c) m. 6.558 2.424 1.936 1.938 | 2.093 2442 | 2.083 | 2.057 | 2.145 2777 4.988 2.082
sd. 1.958 1.120 1.093 1.095 1.118 1.117 1.087 1.087 1.062 1.103 1.580 0.824
T* 9900 10000 | 4632 458 70 2499 411 132 35 16

Model 3 (¢c) m. 37.034 6.323 4454 | 4480 | 5.879 6382 | 5274 | 5163 | 5.781 8.187 23.898 6.198
sd. 8.617 3.883 3703 | 3.708 | 3.948 3936 | 3.824 | 3.761 3.827 | 4.020 5.746 3.421

T 10 000 10000 | 4296 415 54 2491 361 113 31 23
Crimes m. 0.049 0.019 0.019 | 0.019 | 0.021 0.021 0.021 0.021 0.021 0.024 0.019 0.019
sd. 0.004 0.001 0.001 0.002 | 0.002 0.002 | 0.001 0.001 0.002 | 0.002 0.001 0.001

T 10 000 9 960 2172 214 86 2240 296 91 26 16
Wine m. 0.632 0.417 0412 | 0412 | 0419 0.421 0.421 0.421 0.424 | 0.459 0.426 0.365
sd. 0.044 0.032 0.032 | 0.032 | 0.032 0.034 | 0.033 | 0.032 | 0.032 | 0.034 0.001 0.001

T 10 000 9999 3727 366 79 2433 393 154 36 11

Table 3: Mean (m.) and standard deviation (sd.) of the mean squared test error for the
regression problems. Also shown for the boosting algorithms is the mean over all replications
of the optimal number of components (7). Results are averaged over 100 independent
replications for simulated examples and over 20 independent permutations of the sample for
real-life data sets. For each data set, the two best performances are in bold.

‘ le-05 | 0.001 [%]f)l | o1 | o5 H le-05 | 0001 | 1?)?)]13[01 | 05 H

Model 4 (u) m. 0.416 0.229 0.098 | 0.086 | 0.085 0248 | 0.085 | 0.088 | 0.108 | 0.217 0.419 0.206
sd. 0.020 0.023 0.018 | 0.015 | 0.016 0.023 | 0.016 | 0.016 | 0.017 | 0.036 0.021 0.025
T* 9900 10000 | 9998 2619 452 2500 1 404 421 97 22
Model 5 (u) m. 0.353 0.144 0.141 0.141 0.142 0.145 | 0.142 | 0.141 0.144 | 0.155 0.138 0.151
sd. 0.024 0.016 0.017 | 0.016 | 0.018 0.017 | 0.018 | 0.017 | 0.016 | 0.021 0.018 0.019
T 10 000 10000 | 2465 240 41 2500 387 121 34 12

Model 4 (c) m. 0.451 0.171 0.086 | 0.081 0.079 0.185 | 0.080 | 0.081 0.095 | 0.183 0.453 0.134
sd. 0.027 0.020 0.015 | 0.014 | 0.014 0.022 | 0.014 | 0.015 | 0.015 0.03 0.025 0.018
T* 10 000 10000 | 9996 1781 319 2500 1156 358 88 23
Model 5 (c) m. 0.423 0.119 0.114 | 0.114 | 0.115 0.123 | 0.114 | 0.116 | 0.118 | 0.132 0.118 0.116
sd. 0.037 0.016 0.015 | 0.016 | 0.016 0.018 | 0.016 | 0.016 | 0.016 | 0.020 0.016 0.018

Lasso H RF ‘

T* 10 000 10000 | 3694 354 65 2500 493 151 40 14

Adult m. 0.249 0.150 0.141 0.138 | 0.138 0.151 0.140 | 0.140 | 0.143 | 0.152 0.155 0.186
sd. 0.004 0.004 0.004 | 0.004 | 0.004 0.004 | 0.005 | 0.005 | 0.004 | 0.004 0.004 0.005
T* 10 000 10000 | 9966 | 6714 1635 2500 1853 610 143 24

Advert m. 0.165 0.062 0.043 | 0.043 | 0.043 0.063 | 0.043 | 0.043 | 0.044 | 0.054 0.032 0.031
sd. 0.014 0.009 0.012 | 0.013 | 0.012 0.008 | 0.013 | 0.013 | 0.011 0.011 0.007 0.009
T 10 000 9999 4716 471 87 2500 568 181 50 18

Spam m. 0.396 0.071 0.061 | 0.061 0.065 0.077 | 0.064 | 0.065 | 0.068 | 0.086 0.095 0.057
sd. 0.013 0.009 0.008 | 0.007 | 0.007 0.009 | 0.009 | 0.007 | 0.007 | 0.011 0.072 0.007
T* 10 000 10000 | 3880 426 84 2500 479 150 40 16

Table 4: Mean (m.) and standard deviation (sd.) of the misclassification test errors for
the classification problems. Also shown for the boosting algorithms is the mean over all
replications of the optimal number of components (7*). Results are averaged over 100
independent replications for simulated examples and over 20 independent permutations of
the sample for real-life data sets. For each data set, the two best performances are in bold.

in the output model and is less sensitive to the shrinkage parameter. Our results are best

17

‘ 1e-05 | 0.001 1%%1 | o1 | 05 H 1e-05 | 0001 | 1(&).((})]13 | o1 | 05 H

Model 4 (u) m. 0.590 0.885 0.971 0976 | 0.977 0.869 | 0.977 | 0.975 | 0.964 | 0.862 0.515 0.891
sd. 0.037 0.021 0.008 | 0.007 | 0.007 0.023 | 0.007 | 0.007 | 0.010 | 0.040 0.018 0.021
T* 9900 10000 | 9998 2619 452 2500 1404 421 97 22
Model 5 (u) m. 0.772 0.935 0936 | 0936 | 0.934 0.933 | 0937 | 0936 | 0935 | 0.922 0.940 0.922
sd. 0.059 0.013 0.012 | 0.012 | 0.013 0.013 | 0.013 | 0.012 | 0.012 | 0.015 0.011 0.016
T 10 000 10000 | 2465 240 41 2500 387 121 34 12

Model 4 (c) m. 0.621 0.927 0978 | 0.981 | 0.981 0916 | 0.981 | 0.981 0.972 | 0.898 0.516 0.945
sd. 0.043 0.014 0.006 | 0.005 | 0.005 0.016 | 0.005 | 0.005 | 0.008 | 0.030 0.019 0.012
T* 10 000 10000 | 9996 1781 319 2 500 1156 358 88 23
Model 5 (c) m. 0.753 0.960 0.962 | 0.963 | 0.961 0.957 | 0.962 | 0.962 | 0.960 | 0.947 0.960 0.955
sd. 0.059 0.009 0.008 | 0.008 | 0.008 0.009 | 0.008 | 0.008 | 0.008 | 0.011 0.007 0.011

Lasso H RF ‘

T* 10 000 10000 | 3694 354 65 2500 493 151 40 14

Adult m. 0.758 0.905 0915 | 0.920 | 0.920 0902 | 0918 | 0917 | 0913 | 0.901 0.902 0.858
sd. 0.005 0.004 0.004 | 0.004 | 0.003 0.004 | 0.004 | 0.004 | 0.003 | 0.004 0.004 0.008
T* 10 000 10000 | 9966 | 6714 1 635 2500 1853 610 143 24

Advert m. 0.815 0.962 0974 | 0973 | 0.973 0956 | 0973 | 0975 | 0.971 0.950 0.973 0.983
sd. 0.059 0.014 0.011 0.012 | 0.013 0.015 | 0.014 | 0.011 0.015 | 0.022 0.008 0.008
T 10 000 9999 4716 471 87 2500 568 181 50 18

Spam m. 0.854 0.975 0.980 | 0.980 | 0.979 0973 | 0978 | 0.978 | 0.977 | 0.966 0.970 0.979
sd. 0.028 0.003 0.003 | 0.003 | 0.003 0.004 | 0.003 | 0.003 | 0.003 | 0.005 0.004 0.003
T* 10 000 10000 | 3880 426 84 2500 479 150 40 16

Table 5: Mean (m.) and standard deviation (sd.) of AUC for the classification problems.
Also shown for the boosting algorithms is the mean over all replications of the optimal
number of components (7). Results are averaged over 100 independent replications for
simulated examples and over 20 independent permutations of the sample for real-life data
sets. For each data set, the two best performances are in bold.

summarized by Figure 6, which offers the most compelling evidence about the benefits of
AGB: the plots on the left show statistically significant performance similarities between AGB
and regular gradient tree boosting, while the right clearly show a substantive drop in the
number of iterations required (resulting in sparser models). The code base is made freely
available at https://github.com/lrouviere/AGB.

The present article is based on empirical considerations and cannot, on its own, explain
the reasons for the good performance of the AGB algorithm. This would require a thorough
analysis of the theoretical properties of the combination gradient boosting + Nesterov’s
acceleration, taking the point of view of functional optimization. Such an analysis is difficult
and goes far beyond the scope of our work. In fact, even for regular gradient boosting, few
theoretical results are known and much work remains to be done to clarify the mathematical
forces driving the algorithm. Many articles regard boosting with a statistical eye and study
the somewhat idealized problem of empirical risk minimization with a convex loss (e.g.,
Blanchard et al., 2003; Lugosi and Vayatis, 2004). These papers essentially concentrate
on the statistical properties of the approach (that is, consistency and rates of convergence
as the sample size grows) and often ignore the underlying optimization aspects. Other
articles, such as Bithlmann and Yu (2003); Zhang and Yu (2005); Bartlett and Traskin (2007)
take advantage of the iterative principle of boosting, but mainly focus on regularization via
early stopping (that is, stopping the boosting iterations at some point), without paying too
much attention to the optimization side. Notable exceptions are the pioneering notes of
Breiman (1997, 1998, 1999, 2000, 2004), together with the paper by Mason et al. (2000),
who envision gradient boosting as an infinite-dimensional numerical optimization problem
and pave the way for more abstract investigations. More recently, Biau and Cadre (2017)

18

https://github.com/lrouviere/AGB

analyze two versions of gradient boosting and prove their convergence as the number of
iterations tends to infinity. Nevertheless, despite all these research efforts, there is to date no
sound theory of gradient boosting.

On the other hand, Nesterov’s accelerated descent is provably faster than gradient descent
when the gradient used is accurate (see Bubeck, 2015, Chapter 3). However, when the
gradient is not accurate (e.g., in a stochastic setting), then Nesterov’s descent is prone to
accumulating error and diverging. This type of situation is analyzed in Devolder et al. (2014),
who prove that the superiority of fast gradient methods over the classical ones is no longer
absolute when an inexact oracle is used. Therefore, the benefits of Nesterov’s technique
may be lost, or reduced, in some inexact gradient settings. This is of course the case in
our boosting problem, since the gradient direction is highly inexact due to the least squares
approximation (5). It is thus theoretically not immediately clear when and how Nesterov’s
descent can really help gradient boosting. Therefore, beyond our empirical findings, it is
essential to tackle the problem from a mathematical point of view. With this respect, we note
that Jain et al. (2018) address the issues of instability and error accumulation of fast gradient
methods for the special case of stochastic approximation for the least squares regression
problem. They show in particular that acceleration can be made robust to statistical errors by
introducing an accelerated stochastic gradient method that provably achieves the minimax
optimal statistical risk faster than stochastic gradient descent.

Acknowledgments

We greatly thank two referees for valuable comments and insightful suggestions, which led
to a substantial improvement of the paper.

References

P.L. Bartlett and M. Traskin. AdaBoost is consistent. Journal of Machine Learning Research,
8:2347-2368, 2007.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences, 2:183-202, 2009.

S. Becker, J. Bobin, and E.J. Candes. NESTA: A fast and accurate first-order method for
sparse recovery. SIAM Journal on Imaging Sciences, 4:1-39, 2011.

G. Biau and B. Cadre. Optimization by gradient boosting. arXiv:1707.05023, 2017.

G. Biau, A. Fischer, B. Guedj, and J.D. Malley. COBRA: A combined regression strategy.
Journal of Multivariate Analysis, 146:18-28, 2016.

P.J. Bickel, Y. Ritov, and A. Zakai. Some theory for generalized boosting algorithms.
Journal of Machine Learning Research, 7:705-732, 2006.

G. Blanchard, G. Lugosi, and N. Vayatis. On the rate of convergence of regularized boosting
classifiers. Journal of Machine Learning Research, 4:861-894, 2003.

19

L. Breiman. Arcing the edge. Technical Report 486, Statistics Department, University of
California, Berkeley, 1997.

L. Breiman. Arcing classifiers (with discussion). The Annals of Statistics, 26:801-824,
1998.

L. Breiman. Prediction games and arcing algorithms. Neural Computation, 11:1493—-1517,
1999.

L. Breiman. Some infinite theory for predictor ensembles. Technical Report 577, Statistics
Department, University of California, Berkeley, 2000.

L. Breiman. Random forests. Machine Learning, 45:5-32, 2001.

L. Breiman. Population theory for boosting ensembles. The Annals of Statistics, 32:1-11,
2004.

S. Bubeck. ORF523: Nesterov’s accelerated gradient descent, 2013. URL https://blogs.
princeton.edu/imabandit/2013/04/01/acceleratedgradientdescent.

S. Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends in
Machine Learning, 8:231-357, 2015.

P. Bithlmann and T. Hothorn. Boosting algorithms: Regularization, prediction and model
fitting (with discussion). Statistical Science, 22:477-505, 2007.

P. Biithlmann and B. Yu. Boosting with the L, loss: Regression and classification. Journal
of the American Statistical Association, 98:324-339, 2003.

T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 785-794. ACM, New York, 2016.

O. Devolder, F. Glineur, and Y. Nesterov. First-order methods of smooth convex optimization
with inexact oracle. Mathematical Programming, 146:37-75, 2014.

L. Devroye, L. Gyorfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition.
Springer, New York, 1996.

Y. Freund. Boosting a weak learning algorithm by majority. Information and Computation,
121:256-285, 1995.

Y. Freund and R.E. Schapire. Experiments with a new boosting algorithm. In S. Lorenza,
editor, Machine Learning: Proceedings of the Thirteenth International Conference on
Machine Learning, pages 148—156. Morgan Kaufmann Publishers, San Francisco, 1996.

Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55:119-139, 1997.

20

https://blogs.princeton.edu/imabandit/2013/04/01/acceleratedgradientdescent
https://blogs.princeton.edu/imabandit/2013/04/01/acceleratedgradientdescent

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of
boosting (with discussion). The Annals of Statistics, 28:337-374, 2000.

J.H. Friedman. Greedy function approximation: A gradient boosting machine. The Annals
of Statistics, 29:1189-1232, 2001.

J.H. Friedman. Stochastic gradient boosting. Computational Statistics & Data Analysis, 38:
367-378, 2002.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Second Edition. Springer, New York, 2009.

P. Jain, P. Netrapalli, S.M. Kakade, R. Kidambi, and A. Sidford. Accelerating stochastic
gradient descent for least squares regression. In S. Bubeck, V. Perchet, and P. Rigollet,

editors, Proceedings of the 31st Conference On Learning Theory, volume 75, pages
545-604. PMLR, 2018.

G. Lugosi and N. Vayatis. On the Bayes-risk consistency of regularized boosting methods.
The Annals of Statistics, 32:30-55, 2004.

L. Mason, J. Baxter, P. Bartlett, and M. Frean. Boosting algorithms as gradient descent.
In S.A. Solla, T.K. Leen, and K. Miiller, editors, Proceedings of the 12th International
Conference on Neural Information Processing Systems, pages 512—-518. The MIT Press,
Cambridge, MA, 1999.

L. Mason, J. Baxter, P. Bartlett, and M. Frean. Functional gradient techniques for combining
hypotheses. In A.J. Smola, P.L. Bartlett, B. Scholkopf, and D. Schuurmans, editors,
Advances in Large Margin Classifiers, pages 221-246. The MIT Press, Cambridge, MA,
2000.

Y. Nesterov. A method of solving a convex programming problem with convergence rate
O(1/k?). Soviet Mathematics Doklady, 27:372-376, 1983.

Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Springer
Science+Business Media, New York, 2004.

Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming,
103:127-152, 2005.

Y. Nesterov. Gradient methods for minimizing composite functions. Mathematical Pro-
gramming, 140:125-161, 2013.

G. Qu and N. Li. Accelerated distributed Nesterov gradient descent. In 54th Annual

Allerton Conference on Communication, Control, and Computing, pages 209-216. Curran
Associates, Inc., Red Hook, 2016.

G. Ridgeway. Generalized boosted models: A guide to the gbm package, 2007. URL
http://www.saedsayad.com/docs/gbm2.pdf.

21

http://www.saedsayad.com/docs/gbm2.pdf

R.E. Schapire. The strength of weak learnability. Machine Learning, 5:197-227, 1990.

W. Su, S. Boyd, and E.J. Candes. A differential equation for modeling Nesterov’s accelerated
gradient method: Theory and insights. Journal of Machine Learning Research, 17:1-43,
2016.

I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and
momentum in deep learning. In S. Dasgupta and D. McAllester, editors, Proceedings of
the 30th International Conference on Machine Learning, pages 1139-1147. Proceedings
of Machine Learning Research, 2013.

R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal
Statistical Society. Series B, 58:267-288, 1996.

P. Tseng. On accelerated proximal gradient methods for convex-concave optimization, 2008.
URL http://www.mit.edu/ dimitrib/PTseng/papers/apgm.pdf.

T. Zhang and B. Yu. Boosting with early stopping: Convergence and consistency. The
Annals of Statistics, 33:1538-1579, 2005.

22

http://www.mit.edu/~dimitrib/PTseng/papers/apgm.pdf

	Introduction
	(Accelerated) gradient boosting
	Gradient boosting at a glance
	The AGB algorithm

	Numerical studies
	Description of the data sets
	Gradient boosting vs. accelerated gradient boosting
	Time-varying vs. fixed weights
	Comparison with the Lasso and random forests

	Conclusion and discussion

