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Abstract

Gradient tree boosting is a prediction algorithm that sequentially produces
a model in the form of linear combinations of decision trees, by solving an
infinite-dimensional optimization problem. We combine gradient boosting
and Nesterov’s accelerated descent to design a new algorithm, which we call
AGB (for Accelerated Gradient Boosting). Substantial numerical evidence
is provided on both synthetic and real-life data sets to assess the excellent
performance of the method in a large variety of prediction problems. It is
empirically shown that AGB is less sensitive to the shrinkage parameter and
outputs predictors that are considerably more sparse in the number of trees,
while retaining the exceptional performance of gradient boosting.

1 Introduction

Gradient boosting (Friedman et al., 2000; Friedman, 2001, 2002) is a learning procedure that
combines the outputs of many simple predictors in order to produce a powerful committee
with performances improved over the single members. The approach is typically used with
decision trees of a fixed size as base learners, and, in this context, is called gradient tree
boosting. This machine learning method is widely recognized for providing state-of-the-art
results on several challenging data sets, as pointed out by Chen and Guestrin (2016). Boosted
decision trees are generally regarded as one of the best off-the-shell prediction algorithms
we have today, with performance at the level of the Lasso (Tibshirani, 1996) and random
forests (Breiman, 2001), to name only two competitors.

Gradient boosting originates in Freund and Schapire’s work (Schapire, 1990; Freund, 1995;
Freund and Schapire, 1996, 1997) on weighted iterative classification. It was complemented
by several analyses by Breiman (1997, 1998, 1999, 2000, 2004), who made the fundamental



observation that Freund and Schapire’s AdaBoost is in fact a gradient-descent-type algorithm
in a function space, thus identifying boosting at the frontier of numerical optimization
and statistical estimation. Explicit regression and classification boosting algorithms were
subsequently developed by Friedman (2001, 2002), who coined the name “gradient boosting”
and paid a special attention to the case where the individual components are decision trees.
Overall, this functional view of boosting has led to the development of boosting algorithms
in many areas of machine learning and statistics beyond regression and classification (e.g.,
Blanchard et al., 2003; Bühlmann and Yu, 2003; Lugosi and Vayatis, 2004; Zhang and Yu,
2005; Bickel et al., 2006; Bühlmann and Hothorn, 2007).

In a different direction, the pressing demand of the machine learning community to build
accurate prediction mechanisms from massive amounts of high-dimensional data has greatly
promoted the theory and practice of accelerated first-order schemes. In this respect, one of
the most effective approaches among first-order optimization techniques is the so-called
Nesterov’s accelerated gradient descent (Nesterov, 1983). In a nutshell, if we are interested
in minimizing some convex function g(x) over Rd , then Nesterov’s descent may take the
following form (Beck and Teboulle, 2009; Bubeck, 2015): starting with x0 = y0, inductively
define

xt+1 = yt−w∇g(yt)
yt+1 = (1− γt)xt+1 + γtxt ,

(1)

where w is the step size,

λ0 = 0, λt =
1+
√

1+4λ 2
t−1

2
, and γt =

1−λt

λt+1
.

In other words, Nesterov’s descent performs a simple step of gradient to go from yt to xt+1,
and then it slides it a little bit further than xt+1 in the direction given by the previous point
xt . As acknowledged by Bubeck (2013), the intuition behind the algorithm is quite difficult
to grasp. Nonetheless, Nesterov’s accelerated gradient descent is an optimal method for
smooth convex optimization: the sequence (xt)t defined in (1) recovers the minimum of g
at a rate of order 1/t2 (e.g., Bubeck, 2015, Theorem 3.19), in contrast to vanilla gradient
descent methods, which have the same computational complexity but can only achieve a rate
in 1/t. Throughout the document, we will use form (1) for Nesterov’s descent, keeping in
mind that other choices are possible but less adapted to the boosting context, as we will see
later. Since the introduction of Nesterov’s scheme, there has been much work on first-order
accelerated methods (see, e.g., Nesterov, 2004, 2005, 2013; Su et al., 2016, for theoretical
developments, and Tseng, 2008, for a unified analysis of these ideas). Notable applications
can be found in sparse linear regression (Beck and Teboulle, 2009), compressed sensing
(Becker et al., 2011), distributed gradient descent (Qu and Li, 2016), and deep and recurrent
neural networks (Sutskever et al., 2013).

In this article, we present AGB (for Accelerated Gradient Boosting), a new tree boosting
algorithm that incorporates Nesterov’s mechanism (1) into Friedman’s original procedure
(Friedman, 2001). Substantial numerical evidence is provided on both synthetic and real-life
data sets to assess the excellent performance of our method in a large variety of prediction
problems. The striking feature of AGB is that it enjoys the merits of both approaches:
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(i) Its predictive performance is comparable to that of standard gradient tree boosting;

(ii) It takes advantage of the accelerated descent to output models which are remarkably
much more sparse in their number of components.

Item (ii) is of course a decisive advantage for large-scale learning, when time and storage
issues matter. To make the concept clear, we show in Figure 1 typical test error results by
number of iterations and shrinkage (step size), both for the standard (top) and the accelerated
(bottom) algorithms. As is often the case with gradient boosting, smaller values of the
shrinkage parameter require a larger number of trees for the optimal model, when the test
error is at its minimum. However, if both approaches yield similar results in terms of
prediction, we see that the optimal number of iterations is at least one order of magnitude
smaller for AGB.
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Figure 1: Adaboost exponential loss (estimated on a test data set) by number of iterations
for standard gradient boosting (top) and AGB (bottom). The data are generated according to
Model 5 with n = 5 000 observations (see page 9).

The paper is organized as follows. In Section 2, we briefly recall the mathematical/statistical
context of gradient boosting, and present the principle of the AGB algorithm. Section 3 is
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devoted to analyzing the results of a battery of experiments on synthetic and real-life data
sets. We offer an extensive comparison between the performance of Friedman’s gradient tree
boosting and AGB, with a special emphasis put on the influence of the learning rate on the
size of the optimal models. Section 4 summarizes the main results and discusses research
directions for future work. The code used for the simulations and the figures is available at
https://github.com/lrouviere/AGB.

2 (Accelerated) gradient boosting

2.1 Gradient boosting at a glance

Let Dn = {(X1,Y1), . . . ,(Xn,Yn)} be a sample of i.i.d. observations, taking values inRd×Y .
Throughout, Y ⊂R is either a finite set of labels (for classification) or a subset of R (for
regression). The learning task is to construct a predictor F :Rd →R that assigns a response
to each possible value of the independent random observation Xn+1. In the context of
gradient boosting, this general problem is addressed by considering a class F of elementary
functions f :Rd→R (called the weak or base learners), and by minimizing some empirical
risk functional

Cn(F) =
1
n

n

∑
i=1

ψ(F(Xi),Yi) (2)

over the linear combinations of functions in F . Thus, we are looking for an additive solution
of the form Fn = ∑

T
t=0 αt ft , where (α0, . . . ,αT ) ∈RT+1 and each component ft is picked in

the base class F .

The function ψ :R×Y →R+ is called the loss. It is assumed to be convex and continuously
differentiable in its first argument. It measures the cost incurred by predicting F(Xi) when
the answer is Yi. For example, in the least squares regression problem, ψ(x,y) = (y− x)2,
and

Cn(F) =
1
n

n

∑
i=1

(Yi−F(Xi))
2.

In the ±1-classification problem, the final classification rule is +1 if F(x) > 0 and −1
otherwise. In this context, two classical losses are ψ(x,y) = e−yx (Adaboost exponential
loss) and ψ(x,y) = log2(1+ e−yx) (logit loss, where log2 is the binary logarithm).

In the present document, we take for F the collection of all binary decision trees in
Rd using axis parallel cuts with k (small) terminal nodes (or leaves). Let 1A denote the
indicator function of a set A. Then each f ∈F takes the form f = ∑

k
j=1 β j1A j , where

(β1, . . . ,βk) ∈Rk and {A1, . . . ,Ak} is a tree-structured partition of Rd (Devroye et al., 1996,
Chapter 20). An example of regression tree fitted with the R package rpart.plot with
k = 3 leaves in dimension d = 2 is shown in Figure 2.
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Figure 2: A regression tree in dimension d = 2 with k = 3 leaves.

Let us get back to the minimization problem (2) and denote by lin(F ) the set of all linear
combinations of functions in F , our basic collection of trees. So, each F ∈ lin(F ) is
an additive association of trees, of the form FT = ∑

T
t=0 αt ft . Finding the infimum of the

functional Cn over lin(F ) is a challenging infinite-dimensional optimization problem, which
requires an algorithm. This is where gradient boosting comes into play by sequentially
constructing a linear combination of trees, adding one new component at each step. This
algorithm rests upon a sort of functional gradient descent, which we briefly describe in the
next paragraph. We do not go too much into the mathematical details, and refer to Mason
et al. (1999, 2000) and Biau and Cadre (2017) for a thorough analysis of the mathematical
forces in action.

Let δz denote the Dirac measure at z, and let µn = (1/n)∑
n
i=1 δ(Xi,Yi) be the empirical measure

associated with the sample Dn. Clearly,

Cn(F) = Eψ(F(X),Y ),

where (X ,Y ) denotes a random pair with distribution µn and the symbol E denotes the
expectation with respect to µn. The theoretical version of Cn is

C(F) = Eψ(F(X1),Y1),

where now the expectation is taken with respect to the distribution of (X1,Y1). To unify
the notation, we let for now (X ,Y ) be a generic pair of random variables with distribution
µX ,Y , keeping in mind that µX ,Y may be the distribution of (X1,Y1) (theoretical risk) or
the empirical measure µn (empirical risk). We let µX be the distribution of X , L2(µX) the
vector space of all measurable functions f :Rd →R such that

∫
| f |2dµX < ∞, and denote

by 〈·, ·〉µX and ‖ · ‖µX the corresponding norm and scalar product. Thus, with this notation,
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our problem is to minimize the quantity

C(F) = Eψ(F(X),Y )

over the linear combinations of functions in the given subset F of L2(µX).

As we have seen earlier, it is assumed that, for each y ∈ Y , the function ψ(·,y) is convex
and continuously differentiable. In this setting, the functional C is differentiable at any
F ∈ L2(µX) in the direction G ∈ L2(µX), with differential

dC(F ;G) = 〈∇C(F),G〉µX ,

where ∇C(F)(x) :=
∫

∂xψ(F(x),y)µY |X=x(dy) is called the gradient of C at F (the symbol
∂x means partial derivative with respect to the first component and µY |X is the conditional
distribution of Y given X).

Suppose now that we have at step t a function Ft ∈ lin(F ) and wish to find a new ft+1 ∈F
to add to Ft so that the risk C(Ft +w ft+1) decreases at most, for some small value of
w. Viewed in function space terms, we are looking for the direction ft+1 ∈F such that
C(Ft +w ft+1) most rapidly decreases. One approach might be to take ft+1(·) =−∇C(Ft)(·),
the opposite of the gradient of C at Ft (this is a function over Rd), and update according to

Ft+1 = Ft−w∇C(Ft). (3)

However, since we are restricted to pick our new function in F , this will in general not be a
possible choice. The strategy is to choose the new ft+1 by a least squares approximation of
the function −∇C(Ft)(·), i.e., to take

ft+1 ∈ argmin f∈F‖−∇C(Ft)− f‖2
µX
. (4)

In the empirical setting, where C ≡ Cn and µX is the empirical measure with respect to
X1, . . . ,Xn, it is easy to see that the approximation (4) takes the form

ft+1 ∈ argmin f∈F
1
n

n

∑
i=1

(
−∇Cn(Ft)(Xi)− f (Xi)

)2
, (5)

where ∇Cn(Ft)(Xi) = ∂xψ(Ft(Xi),Yi). For example, when ψ(x,y) = (y− x)2/2, then
−∇Cn(Ft)(Xi) = Yi−Ft(Xi), and the algorithm simply fits ft+1 to the residuals Yi−Ft(Xi)
at step t.

Iteration (3) together with approximation (5) form the core of the gradient boosting principle.
After T iterations, the method outputs an additive expansion of the form FT = ∑

T
t=0 αt ft ,

where (α0, . . . ,αT ) is a sequence of weights and ( f0, . . . , fT ) is a sequence of trees in F .
The parameter w in (3) is the step size of the gradient descent. It is eventually allowed
to change at every iteration and should be carefully chosen for convergence guarantees,
as shown for example in Biau and Cadre (2017). Importantly, from a practical point of
view, finding the optimum in (5) is a non-trivial computational problem, which necessitates
a strategy. In Friedman’s gradient tree boosting algorithm (Friedman, 2001), one uses a
CART-style top-down recursive partitioning to compute the minimum at each iteration,
together with several regularization techniques to reduce the eventual overfitting. Some of
these features are incorporated in our accelerated version, which is presented in the next
section.
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2.2 The AGB algorithm

The pseudo-code of AGB is summarized in the table below.

AGB algorithm

1: Require The data set Dn, T ≥ 1 (number of iterations), k ≥ 1 (number of terminal
nodes in the trees), 0 < ν < 1 (shrinkage parameter).

2: Initialize F0 = G0 ∈ argminz ∑
n
i=1 ψ(z,Yi), λ0 = 0, γ0 = 1.

3: for t = 0 to (T −1) do

4: For i = 1, . . . ,n, compute the negative gradient instances

Zi,t+1 =−∇Cn(Gt)(Xi).

5: Fit a regression tree to the pairs (Xi,Zi,t+1), giving terminal nodes R j,t+1, 1≤ j ≤ k.

6: For j = 1, . . . ,k, compute

w j,t+1 ∈ argminw>0 ∑
Xi∈R j,t+1

ψ(Gt(Xi)+w,Yi).

7: Update

(a) Ft+1 = Gt +ν ∑
k
j=1 w j,t+11R j,t+1 .

(b) Gt+1 = (1− γt)Ft+1 + γtFt .

(c) λt =
1+
√

1+4λ 2
t−1

2 , λt+1 =
1+
√

1+4λ 2
t

2 .

(d) γt =
1−λt
λt+1

.

8: end for

9: Output FT .

We see that the algorithm has two inner functional components, (Ft)t and (Gt)t , which
correspond respectively to the vectorial sequences (xt)t and (yt)t of Nesterov’s acceleration
scheme (1). Observe that the sequence (Gt)t is internal to the procedure while the linear
combination output by the algorithm after T iterations is FT . Line 2 initializes to the optimal
constant model. As in Friedman’s original approach, the algorithm selects at each iteration,
by least-squares fitting, a particular tree that is in most agreement with the descent direction
(the “gradient”), and then performs an update of Gt . The essential difference is the presence
of the companion function sequence (Gt)t , which slides the iterates (Ft)t according to the
recursive parameters λt and γt (lines 7 (b)-(d)).
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Let ft+1 = ∑
k
j=1 β j,t+11R j,t+1 be the approximate-gradient tree output in line 6 of the algo-

rithm. The next logical step is to perform a line search to find the step size and update the
model accordingly, as follows:

wt+1 ∈ argminw>0

n

∑
i=1

ψ(Gt(Xi)+w ft+1(Xi),Yi), Ft+1 = Gt +wt+1 ft+1.

However, following Friedman’s gradient tree boosting (Friedman, 2001), a separate optimal
value w j,t+1 is chosen for each of the tree’s regions, instead of a single wt+1 for the whole
tree. This operation gives more latitude to the additive model and is known to usually
improve the quality of the fit. Thus, the coefficients β j,t+1 from the tree-fitting procedure
can be then simply discarded, and the model update rule at epoch t becomes, for each
j = 1, . . . ,k,

w j,t+1 ∈ argminw>0 ∑
Xi∈R j,t+1

ψ(Gt(Xi)+w,Yi), Ft+1 = Gt +ν

k

∑
j=1

w j,t+11R j,t+1

(lines 6 and 7 (a)). We also note that the contribution of the approximate gradient is scaled
by a factor 0 < ν < 1 when it is added to the current approximation. The parameter ν can
be regarded as controlling the learning rate of the boosting procedure. Smaller values of ν

(more shrinkage) usually lead to larger values of T for the same training risk. Therefore, in
order to reduce the number of trees composing the boosting estimate, large values for ν are
required. However, too large values of ν may break the gradient descent dynamic, as shown
for example in Biau and Cadre (2017, Lemma 3.2). Indeed, this lemma indicates that for a
sufficiently smooth loss function ψ(x,y) the difference C(Ft)−C(Ft+1) decreases as soon
as ν is small enough. All in all, both ν and T control prediction risk on the training data and
these parameters do not operate independently. This tradeoff issue is thoroughly explored in
the next section.

3 Numerical studies

This section is devoted to illustrating the potential of our AGB algorithm and to highlighting
the benefits of Nesterov’s acceleration scheme in the boosting process. Synthetic models
and real-life data are considered, and an exhaustive comparison with standard gradient
tree boosting is performed. For the implementation of Friedman’s boosting, we used the R
package gbm, a description of which can be found in Ridgeway (2007). These two boosting
algorithms are compared in the last subsection with the Lasso (Tibshirani, 1996) and random
forests (Breiman, 2001) methods, respectively implemented with the packages glmnet and
randomForest.

3.1 Description of the data sets

The algorithms were benchmarked on both simulated and real-life data sets. For each of the
simulated models, we consider two designs for X = (X1, . . . ,Xd): Uniform over (−1,1)d

(“Uncorrelated design”) and Gaussian with mean 0 and d× d covariance matrix Σ such
that Σi j = 2−|i− j| (“Correlated design”). The following five models cover a wide spectrum

8



of regression and classification problems. Models 1-3 and 5 come from Biau et al. (2016).
Model 4 is a slight variation of a benchmark model in Hastie et al. (2009). Models 1-3
are regression problems, while Model 4 and 5 are ±1-classification tasks. Models 2-4 are
additive, while Model 1 and 5 include some interactions. Model 3 can be seen as a sparse
high-dimensional problem. We denote by Zµ,σ2 a Gaussian random variable with mean µ

and variance σ2.

Model 1. n = 1000, d = 100, Y = X1X2 +X2
3 −X4X7 +X8X10−X2

6 +Z0,0.5.

Model 2. n = 800, d = 100, Y =−sin(2X1)+X2
2 +X3− exp(−X4)+Z0,0.5.

Model 3. n = 1000, d = 500, Y = X1 +3X2
3 −2exp(−X5)+X6.

Model 4. n = 2000, d = 30,

Y =

{
2 1

∑
10
j=1 X2

j >3.5−1 for uncorrelated design

2 1
∑

10
j=1 X2

j >9.34−1 for correlated design.

Model 5. n = 1500, d = 50, Y = 2 1X1+X3
4 +X9+sin(X12X18)+Z0,0.1>0.38−1.

We also considered the following real-life data sets from the UCI Machine Learning
repository: Adult, Internet Advertisements, Communities and Crime, Spam, and Wine.
Their main characteristics are summarized in Table 1 (a more complete description is
available at the address https://archive.ics.uci.edu/ml/datasets.html).

Data set n d Output Y
Adult 30 162 14 binary

Advert. 2 359 1 431 binary
Crime 1 993 102 continuous
Spam 4 601 57 binary
Wine 1 559 11 continuous

Table 1: Main characteristics of the five real-life data sets used in the experiments.

For each data set, simulated or real, the sample is divided into a training set (50%) Dtrain to fit
the method; a validation set (25%) Dval to select the hyperparameters of the algorithms; and
a test set (25%) Dtest on which the predictive performance is evaluated. We considered two
loss functions for both standard boosting and AGB: the least squares loss ψ(x,y) = (y− x)2

for regression and the Adaboost loss ψ(x,y) = e−yx for ±1-classification. We also tested the
logit loss function ψ(x,y) = log2(1+ e−yx). Since the results are similar to the Adaboost
loss they are not reported.

In the boosting algorithms, the validation set is used to select the number of components of
the model, i.e., the number of iterations performed by the algorithm. Thus, denoting by FT
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the boosting predictor after T iterations fitted on Dtrain, we select the T ? that minimizes

1
]Dval

∑
i∈Dval

ψ(FT (Xi),Yi). (6)

For both standard gradient tree boosting and AGB, we fit regression trees with two terminal
nodes. We considered five fixed values for the shrinkage parameter ν (1e−05, 0.001, 0.01,
0.1, and 0.5), and fixed an arbitrary (large) limit of T = 10000 iterations for the standard
boosting and T = 2500 for AGB. All results are averaged over 100 replications for simulated
examples, and over 20 independent permutations of the sample for the real-life data.

3.2 Gradient boosting vs. accelerated gradient boosting

In this subsection, we compare the standard gradient tree boosting and AGB algorithms in
terms of minimization of the empirical risk (2) and selected number of components T ?.
Figure 3 shows the training and validation errors for Friedman’s boosting and AGB, as a
function of the number of iterations.
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Figure 3: Training (solid lines) and validation (dashed lines) errors for standard gradient
boosting (red) and AGB (blue) for Model 1 (left) and Model 5 (right). Shrinkage parameter
ν is fixed to 0.01.

As it is generally the case for gradient boosting (e.g., Ridgeway, 2007), the validation error
decreases until predictive performance is at its best and then starts increasing again. The
vertical magenta line shows the optimal number of iterations T ?, selected by minimizing
(6). We see that the validation rates at the optimal T ? are comparable for AGB and the
original algorithm. However, AGB outperforms gradient boosting in terms of number of
components of the output model, which is much smaller for AGB. This is a direct consequence
of Nesterov’s acceleration scheme. This remarkable behavior is confirmed by Figures 4-6,
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where we plotted the relationship between predictive performance, the number of iterations,
and the shrinkage parameter. On the left side of each figure, we show the boxplots of the
test errors of the selected predictors FT ? , i.e.,

1
]Dtest

∑
i∈Dtest

ψ(FT ?(Xi),Yi), (7)

as a function of the shrinkage parameter ν . The right sides depict the boxplots of the optimal
number of components T ?.

These three figures convey several messages. First of all, we notice that the predictive
performances of the two methods are close to each other, independently of the data sets
(simulated or real). Moreover, in line with the comments of Hastie et al. (2009, Chapter 10),
smaller values of the shrinkage parameter ν favor better test error. Indeed, for all examples
we observe that the best test errors are achieved for ν smaller than 0.1. However, for such
values of ν , it seems difficult for standard boosting to reach the optimal T ? in a reasonable
number of iterations, and 10 000 iterations are generally not sufficient as soon as ν is less
than 0.01. The accelerated algorithm allows to circumvent this problem since, for each
value of ν , the optimal model is achieved after a number of iterations considerably smaller
than with standard boosting. Besides, AGB is less sensitive to the choice of ν . These two
features are clear advantages since, in practice, one has no or few a priori information on the
reasonable value of ν , and the usual strategy is to try several (often, small) values of the
shrinkage parameter until the validation error is the lowest. Let us finally note that it may be
surprising, at first sight, to see the validation error rise so quickly once the optimum T ? is
reached (Figure 3). However, this rapid increase must be appreciated in view of the equally
rapid decrease of the training error. In fact, AGB overfits extremely fast and the validation
error, for fixed ν , increases just as quickly.

Of course, the benefit of having sparser models is striking when we are faced with large-
scale data, i.e., when iterations have a computational price. To illustrate this point, Table
2 provides the computation times to fit a tree with the default parameters of the rpart
package. The computations have been performed on a laptop with 2.8 GHz processor and
16Gb of RAM memory. We clearly see that it is more and more expensive to fit a tree as
the sample size and/or the dimension of the ambient space increase. It is in this large-scale
context that AGB can have a decisive advantage over regular gradient boosting.

n
d

10 100 1 000

1 000 0.02 0.18 1.98
10 000 0.20 2.35 26.73

100 000 3.81 39.23 412.34

Table 2: Duration in seconds to fit a tree with rpart as a function of n (sample size) and d
(dimension). Results are averaged over 100 repetitions.

11



●

● ● ●

●

●● ●

●

●

●

●
●●

● ●●●
● ●

●●
● ● ●●

●

●●● ● ●● ● ●●●● ●

●

●

● ●
●

●

●

●

● ● ●

●

●
●

●

●

●● ●
●●● ●

●

●●●
●●

●
●

●

●●●
●

●

● ●
●

●●●

● ●●●●●● ●● ●●●●●●●●● ●●●

●●●●●●●●●●●●●●●●

●●●
●
●●

●●●●●●

●●●●●

●●●● ●● ●● ●●●●

●●

●

●

●●●●●● ●●●●●
●
●

●●●●

●

●●

●●●●●●●

●●●●●●●●●

●●●

●●

●●
●

●

●●●●●●●●●●●●●●●●●●

●

●●

● ●●● ● ●●●●

Model 5, error Model 5, iterations

Model 4, error Model 4, iterations

Model 3, error Model 3, iterations

Model 2, error Model 2, iterations

Model 1, error Model 1, iterations

1e−05 0.001 0.01 0.1 0.5 1e−05 0.001 0.01 0.1 0.5

1e−05 0.001 0.01 0.1 0.5 1e−05 0.001 0.01 0.1 0.5

1e−05 0.001 0.01 0.1 0.5 1e−05 0.001 0.01 0.1 0.5

1e−05 0.001 0.01 0.1 0.5 1e−05 0.001 0.01 0.1 0.5

1e−05 0.001 0.01 0.1 0.5 1e−05 0.001 0.01 0.1 0.5
0

2500

5000

7500

10000

0

2500

5000

7500

10000

0

2500

5000

7500

10000

0

2500

5000

7500

10000

0

2500

5000

7500

10000

0.7
0.8
0.9
1.0
1.1
1.2

0.5

1.0

1.5

2.0

2.5

0

1

2

3

0.2

0.4

0.6

0.8

1.0

0.5
0.6
0.7
0.8
0.9

shrinkage

Figure 4: Boxplots of the test error (7) (left) and selected numbers of iterations (right), as
a function of the shrinkage parameter ν for standard gradient boosting (red, left) and AGB
(blue, right). Results are presented for simulated models with uncorrelated design.
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Figure 5: Boxplots of the test error (7) (left) and number of selected iterations (right) as a
function of the shrinkage parameter ν , for standard gradient boosting (red, left) and AGB
(blue, right). Results are presented for simulated models with correlated design.
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Figure 6: Boxplots of the test error (7) (left) and number of selected iterations (right) as a
function of the shrinkage parameter ν , for standard gradient boosting (red, left) and AGB
(blue, right). Results are presented for real-life data sets.
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3.3 Time-varying vs. fixed weights

We briefly discuss in this subsection the influence of the weights (γt)t (line (7)-(d) of the
algorithm). As we have seen in the introduction, the current choice guarantees a fast conver-
gence rate in 1/t2 when the function g to be minimized is convex and sufficiently smooth
(Bubeck, 2015, Theorem 3.19). Remarkably, if g is assumed to be strongly convex, then
Nesterov’s method can achieve a much faster (exponential and optimal) rate of convergence,
using however a different set of weights independent of the iteration t (Bubeck, 2015, Theo-
rem 3.18). It turns out however that most of the losses ψ(x,y) used in gradient boosting are
convex but not strongly convex in x (e.g., the Adaboost exponential and the logit losses), and
it is therefore a safe choice to use the “generic” weights (γt)t defined in (7)-(d). This option
is all the more recommended as the AGB algorithm is not underpinned by any mathematical
theory to date (see the discussion in Section 4). However, for regression problems, the least
squares loss ψ(x,y) = (y− x)2 is strongly convex, and it is thus tempting to operate with
the fixed weights of Bubeck (2015, Theorem 3.18). This simply changes step (7)-(b) of the
AGB algorithm into

Gt+1 =
(

1+
√

κ−1√
κ +1

)
Ft+1−

√
κ−1√
κ +1

Ft ,

where κ = 1/(2ν). We call this new algorithm AGB2. Figure 7 presents results for the
simulated regression Models 1-3. We see that the estimated errors are of the same order for
AGB and AGB2. However, AGB requires considerably less iterations to minimize the validation
error (6), thus drastically reducing the model complexity.

3.4 Comparison with the Lasso and random forests

We compare in this last subsection the performance of the standard and accelerated boosting
algorithms with that of the Lasso and random forests, respectively implemented with the
R packages glmnet and randomForest. As above, the number of components T ? of the
boosting predictors is selected by minimizing (6). The shrinkage parameter of the Lasso
(parameter lambda in glmnet) and the number of variables randomly sampled as candidates
at each split for the trees of the random forests (parameter mtry in randomForest) are
selected by minimizing the mean squared error (regression) and the misclassification error
(classification) computed on the validation set. The R-package caret was used to conduct
these minimization problems. The prediction performance of each predictor F was assessed
on the test set by the mean squared error 1

]Dtest
∑i∈Dtest(Yi−F(Xi))

2 for regression problems,
and (i) the misclassification error 1

]Dtest
∑i∈Dtest 1F(Xi)6=Yi and (ii) the area under ROC curve

(AUC) for classification problems (computed on the test set).

Table 3 shows the test errors for the regression problems, while Tables 4 and 5 display
misclassification errors and AUC for classification tasks. All results are averaged over 100
replications for simulated examples and over 20 permutations of the sample for real-life
data sets.

As might be expected, the results depend on the data sets, with an advantage to boosting
algorithms, which are often the first and perform uniformly well. Besides, even if there
is no clear winner between traditional boosting and AGB, we still find that AGB is weakly
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Figure 7: Boxplots of the test error (7) (left) and number of selected iterations (right) as a
function of the shrinkage parameter ν , for AGB (blue, left) and AGB2 (green, right). Results
are presented for simulated Models 1-3, with uncorrelated design.

sensitive to the choice of ν and leads to more parsimonious models (T ? in the tables) for
both regression and classification problems, and independently of the data set.

4 Conclusion and discussion

In this paper, we have proposed an algorithm named Accelerated Gradient Boosting (AGB). It
is based on Friedman’s gradient tree boosting algorithm (Friedman, 2001), and incorporates
the Nesterov’s accelerated gradient descent technique (Nesterov, 1983) to the gradient step.
Extensive numerical experiments were conducted that reach the following conclusion: AGB
achieves a similar level of predictive error as gradient boosting, but uses far less components
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GB AGB Lasso RF
ν 1e-05 0.001 0.01 0.1 0.5 1e-05 0.001 0.01 0.1 0.5

Model 1 (u) m. 1.011 0.923 0.926 0.927 0.930 0.924 0.927 0.926 0.929 0.920 1.021 0.922
sd. 0.082 0.075 0.076 0.076 0.079 0.076 0.077 0.074 0.074 0.081 0.084 0.078
T ? 10 000 7 924 981 99 11 2 178 247 73 18 7

Model 2 (u) m. 1.883 0.642 0.621 0.621 0.650 0.632 0.621 0.621 0.638 0.794 0.677 0.756
sd. 0.202 0.073 0.075 0.074 0.079 0.069 0.072 0.072 0.073 0.090 0.077 0.086
T ? 10 000 9 989 2 206 214 26 2 488 288 91 26 14

Model 3 (u) m. 2.983 0.318 0.037 0.040 0.119 0.308 0.080 0.078 0.125 0.337 0.948 0.587
sd. 0.221 0.039 0.007 0.008 0.015 0.042 0.019 0.017 0.020 0.060 0.067 0.068
T ? 10 000 10000 7 936 956 97 2 500 627 187 49 29

Model 1 (c) m. 8.316 4.483 4.047 4.051 4.220 4.529 4.141 4.133 4.252 5.354 8.549 4.163
sd. 1.143 0.668 0.557 0.559 0.573 0.669 0.564 0.566 0.575 0.694 1.154 0.623
T ? 10 000 10 000 3 413 330 47 2 500 387 120 32 12

Model 2 (c) m. 6.558 2.424 1.936 1.938 2.093 2.442 2.083 2.057 2.145 2.777 4.988 2.082
sd. 1.958 1.120 1.093 1.095 1.118 1.117 1.087 1.087 1.062 1.103 1.580 0.824
T ? 9 900 10 000 4 632 458 70 2 499 411 132 35 16

Model 3 (c) m. 37.034 6.323 4.454 4.480 5.879 6.382 5.274 5.163 5.781 8.187 23.898 6.198
sd. 8.617 3.883 3.703 3.708 3.948 3.936 3.824 3.761 3.827 4.020 5.746 3.421
T ? 10 000 10 000 4 296 415 54 2 491 361 113 31 23

Crimes m. 0.049 0.019 0.019 0.019 0.021 0.021 0.021 0.021 0.021 0.024 0.019 0.019
sd. 0.004 0.001 0.001 0.002 0.002 0.002 0.001 0.001 0.002 0.002 0.001 0.001
T ? 10 000 9 960 2 172 214 86 2 240 296 91 26 16

Wine m. 0.632 0.417 0.412 0.412 0.419 0.421 0.421 0.421 0.424 0.459 0.426 0.365
sd. 0.044 0.032 0.032 0.032 0.032 0.034 0.033 0.032 0.032 0.034 0.001 0.001
T ? 10 000 9 999 3727 366 79 2 433 393 154 36 11

Table 3: Mean (m.) and standard deviation (sd.) of the mean squared test error for the
regression problems. Also shown for the boosting algorithms is the mean over all replications
of the optimal number of components (T ?). Results are averaged over 100 independent
replications for simulated examples and over 20 independent permutations of the sample for
real-life data sets. For each data set, the two best performances are in bold.

GB AGB Lasso RF
ν 1e-05 0.001 0.01 0.1 0.5 1e-05 0.001 0.01 0.1 0.5

Model 4 (u) m. 0.416 0.229 0.098 0.086 0.085 0.248 0.085 0.088 0.108 0.217 0.419 0.206
sd. 0.020 0.023 0.018 0.015 0.016 0.023 0.016 0.016 0.017 0.036 0.021 0.025
T ? 9 900 10 000 9 998 2 619 452 2 500 1 404 421 97 22

Model 5 (u) m. 0.353 0.144 0.141 0.141 0.142 0.145 0.142 0.141 0.144 0.155 0.138 0.151
sd. 0.024 0.016 0.017 0.016 0.018 0.017 0.018 0.017 0.016 0.021 0.018 0.019
T ? 10 000 10 000 2 465 240 41 2 500 387 121 34 12

Model 4 (c) m. 0.451 0.171 0.086 0.081 0.079 0.185 0.080 0.081 0.095 0.183 0.453 0.134
sd. 0.027 0.020 0.015 0.014 0.014 0.022 0.014 0.015 0.015 0.03 0.025 0.018
T ? 10 000 10 000 9 996 1 781 319 2 500 1 156 358 88 23

Model 5 (c) m. 0.423 0.119 0.114 0.114 0.115 0.123 0.114 0.116 0.118 0.132 0.118 0.116
sd. 0.037 0.016 0.015 0.016 0.016 0.018 0.016 0.016 0.016 0.020 0.016 0.018
T ? 10 000 10 000 3 694 354 65 2 500 493 151 40 14

Adult m. 0.249 0.150 0.141 0.138 0.138 0.151 0.140 0.140 0.143 0.152 0.155 0.186
sd. 0.004 0.004 0.004 0.004 0.004 0.004 0.005 0.005 0.004 0.004 0.004 0.005
T ? 10 000 10 000 9 966 6 714 1 635 2 500 1 853 610 143 24

Advert m. 0.165 0.062 0.043 0.043 0.043 0.063 0.043 0.043 0.044 0.054 0.032 0.031
sd. 0.014 0.009 0.012 0.013 0.012 0.008 0.013 0.013 0.011 0.011 0.007 0.009
T ? 10 000 9 999 4 716 471 87 2 500 568 181 50 18

Spam m. 0.396 0.071 0.061 0.061 0.065 0.077 0.064 0.065 0.068 0.086 0.095 0.057
sd. 0.013 0.009 0.008 0.007 0.007 0.009 0.009 0.007 0.007 0.011 0.072 0.007
T ? 10 000 10 000 3 880 426 84 2 500 479 150 40 16

Table 4: Mean (m.) and standard deviation (sd.) of the misclassification test errors for
the classification problems. Also shown for the boosting algorithms is the mean over all
replications of the optimal number of components (T ?). Results are averaged over 100
independent replications for simulated examples and over 20 independent permutations of
the sample for real-life data sets. For each data set, the two best performances are in bold.

in the output model and is less sensitive to the shrinkage parameter. Our results are best
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GB AGB Lasso RF
ν 1e-05 0.001 0.01 0.1 0.5 1e-05 0.001 0.01 0.1 0.5

Model 4 (u) m. 0.590 0.885 0.971 0.976 0.977 0.869 0.977 0.975 0.964 0.862 0.515 0.891
sd. 0.037 0.021 0.008 0.007 0.007 0.023 0.007 0.007 0.010 0.040 0.018 0.021
T ? 9 900 10 000 9 998 2 619 452 2 500 1404 421 97 22

Model 5 (u) m. 0.772 0.935 0.936 0.936 0.934 0.933 0.937 0.936 0.935 0.922 0.940 0.922
sd. 0.059 0.013 0.012 0.012 0.013 0.013 0.013 0.012 0.012 0.015 0.011 0.016
T ? 10 000 10 000 2 465 240 41 2 500 387 121 34 12

Model 4 (c) m. 0.621 0.927 0.978 0.981 0.981 0.916 0.981 0.981 0.972 0.898 0.516 0.945
sd. 0.043 0.014 0.006 0.005 0.005 0.016 0.005 0.005 0.008 0.030 0.019 0.012
T ? 10 000 10 000 9 996 1 781 319 2 500 1 156 358 88 23

Model 5 (c) m. 0.753 0.960 0.962 0.963 0.961 0.957 0.962 0.962 0.960 0.947 0.960 0.955
sd. 0.059 0.009 0.008 0.008 0.008 0.009 0.008 0.008 0.008 0.011 0.007 0.011
T ? 10 000 10 000 3 694 354 65 2 500 493 151 40 14

Adult m. 0.758 0.905 0.915 0.920 0.920 0.902 0.918 0.917 0.913 0.901 0.902 0.858
sd. 0.005 0.004 0.004 0.004 0.003 0.004 0.004 0.004 0.003 0.004 0.004 0.008
T ? 10 000 10 000 9 966 6 714 1 635 2 500 1 853 610 143 24

Advert m. 0.815 0.962 0.974 0.973 0.973 0.956 0.973 0.975 0.971 0.950 0.973 0.983
sd. 0.059 0.014 0.011 0.012 0.013 0.015 0.014 0.011 0.015 0.022 0.008 0.008
T ? 10 000 9999 4716 471 87 2500 568 181 50 18

Spam m. 0.854 0.975 0.980 0.980 0.979 0.973 0.978 0.978 0.977 0.966 0.970 0.979
sd. 0.028 0.003 0.003 0.003 0.003 0.004 0.003 0.003 0.003 0.005 0.004 0.003
T ? 10 000 10 000 3 880 426 84 2 500 479 150 40 16

Table 5: Mean (m.) and standard deviation (sd.) of AUC for the classification problems.
Also shown for the boosting algorithms is the mean over all replications of the optimal
number of components (T ?). Results are averaged over 100 independent replications for
simulated examples and over 20 independent permutations of the sample for real-life data
sets. For each data set, the two best performances are in bold.

summarized by Figure 6, which offers the most compelling evidence about the benefits of
AGB: the plots on the left show statistically significant performance similarities between AGB
and regular gradient tree boosting, while the right clearly show a substantive drop in the
number of iterations required (resulting in sparser models). The code base is made freely
available at https://github.com/lrouviere/AGB.

The present article is based on empirical considerations and cannot, on its own, explain
the reasons for the good performance of the AGB algorithm. This would require a thorough
analysis of the theoretical properties of the combination gradient boosting + Nesterov’s
acceleration, taking the point of view of functional optimization. Such an analysis is difficult
and goes far beyond the scope of our work. In fact, even for regular gradient boosting, few
theoretical results are known and much work remains to be done to clarify the mathematical
forces driving the algorithm. Many articles regard boosting with a statistical eye and study
the somewhat idealized problem of empirical risk minimization with a convex loss (e.g.,
Blanchard et al., 2003; Lugosi and Vayatis, 2004). These papers essentially concentrate
on the statistical properties of the approach (that is, consistency and rates of convergence
as the sample size grows) and often ignore the underlying optimization aspects. Other
articles, such as Bühlmann and Yu (2003); Zhang and Yu (2005); Bartlett and Traskin (2007)
take advantage of the iterative principle of boosting, but mainly focus on regularization via
early stopping (that is, stopping the boosting iterations at some point), without paying too
much attention to the optimization side. Notable exceptions are the pioneering notes of
Breiman (1997, 1998, 1999, 2000, 2004), together with the paper by Mason et al. (2000),
who envision gradient boosting as an infinite-dimensional numerical optimization problem
and pave the way for more abstract investigations. More recently, Biau and Cadre (2017)
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analyze two versions of gradient boosting and prove their convergence as the number of
iterations tends to infinity. Nevertheless, despite all these research efforts, there is to date no
sound theory of gradient boosting.

On the other hand, Nesterov’s accelerated descent is provably faster than gradient descent
when the gradient used is accurate (see Bubeck, 2015, Chapter 3). However, when the
gradient is not accurate (e.g., in a stochastic setting), then Nesterov’s descent is prone to
accumulating error and diverging. This type of situation is analyzed in Devolder et al. (2014),
who prove that the superiority of fast gradient methods over the classical ones is no longer
absolute when an inexact oracle is used. Therefore, the benefits of Nesterov’s technique
may be lost, or reduced, in some inexact gradient settings. This is of course the case in
our boosting problem, since the gradient direction is highly inexact due to the least squares
approximation (5). It is thus theoretically not immediately clear when and how Nesterov’s
descent can really help gradient boosting. Therefore, beyond our empirical findings, it is
essential to tackle the problem from a mathematical point of view. With this respect, we note
that Jain et al. (2018) address the issues of instability and error accumulation of fast gradient
methods for the special case of stochastic approximation for the least squares regression
problem. They show in particular that acceleration can be made robust to statistical errors by
introducing an accelerated stochastic gradient method that provably achieves the minimax
optimal statistical risk faster than stochastic gradient descent.
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