Height and diameter of Brownian tree

Abstract : By computations on generating functions, Szekeres proved in 1983 that the law of the diameter of a uniformly distributed rooted labelled tree with n vertices, rescaled by a factor n −1/2 , converges to a distribution whose density is explicit. Aldous observed in 1991 that this limiting distribution is the law of the diameter of the Brownian tree. In our article, we provide a computation of this law which is directly based on the normalized Brownian excursion. Moreover, we provide an explicit formula for the joint law of the height and diameter of the Brownian tree, which is a new result.
Type de document :
Article dans une revue
Electronic Communications in Probability, Institute of Mathematical Statistics (IMS), 2015, 20, pp.1-15. 〈10.1214/ECP.v20-4193〉
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

http://hal.upmc.fr/hal-01132277
Contributeur : Gestionnaire Hal-Upmc <>
Soumis le : mercredi 27 janvier 2016 - 13:33:27
Dernière modification le : jeudi 27 avril 2017 - 09:46:37
Document(s) archivé(s) le : jeudi 28 avril 2016 - 11:21:11

Fichier

4193-23740-1-PB.pdf
Publication financée par une institution

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Collections

UPMC | INSMI | USPC | PMA

Citation

Minmin Wang. Height and diameter of Brownian tree. Electronic Communications in Probability, Institute of Mathematical Statistics (IMS), 2015, 20, pp.1-15. 〈10.1214/ECP.v20-4193〉. 〈hal-01132277v2〉

Partager

Métriques

Consultations de la notice

140

Téléchargements de fichiers

55