Improved rates for Wasserstein deconvolution with ordinary smooth error in dimension one

Abstract : This paper deals with the estimation of a probability measure on the real line from data observed with an additive noise. We are interested in rates of convergence for the Wasserstein metric of order $p\geq 1$. The distribution of the errors is assumed to be known and to belong to a class of supersmooth or ordinary smooth distributions. We obtain in the univariate situation an improved upper bound in the ordinary smooth case and less restrictive conditions for the existing bound in the supersmooth one. In the ordinary smooth case, a lower bound is also provided, and numerical experiments illustrating the rates of convergence are presented.
Type de document :
Pré-publication, Document de travail
MAP5 2014-11. 2014
Liste complète des métadonnées

http://hal.upmc.fr/hal-00971316
Contributeur : Bertrand Michel <>
Soumis le : mardi 3 mars 2015 - 22:00:18
Dernière modification le : mardi 10 octobre 2017 - 11:22:04
Document(s) archivé(s) le : samedi 12 septembre 2015 - 22:25:18

Fichiers

WassersteinRev1.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00971316, version 2
  • ARXIV : 1404.0646

Collections

Citation

Jérôme Dedecker, Aurélie Fischer, Bertrand Michel. Improved rates for Wasserstein deconvolution with ordinary smooth error in dimension one. MAP5 2014-11. 2014. 〈hal-00971316v2〉

Partager

Métriques

Consultations de
la notice

205

Téléchargements du document

114