Improved rates for Wasserstein deconvolution with ordinary smooth error in dimension one

Abstract : This paper deals with the estimation of a probability measure on the real line from data observed with an additive noise. We are interested in rates of convergence for the Wasserstein metric of order p ≥ 1. The distribution of the errors is assumed to be known and to belong to a class of supersmooth or ordinary smooth distributions. We obtain in the univariate situation an improved upper bound in the ordinary smooth case and less restrictive conditions for the existing bound in the supersmooth one. In the ordinary smooth case, a lower bound is also provided, and numerical experiments illustrating the rates of convergence are presented.
Type de document :
Article dans une revue
Electronic journal of statistics , Shaker Heights, OH : Institute of Mathematical Statistics, 2015, 9 (1), pp.234-265. 〈10.1214/15-EJS997〉
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

http://hal.upmc.fr/hal-00971316
Contributeur : Gestionnaire Hal-Upmc <>
Soumis le : mercredi 27 janvier 2016 - 16:54:38
Dernière modification le : mardi 10 octobre 2017 - 11:22:04
Document(s) archivé(s) le : jeudi 28 avril 2016 - 11:17:07

Fichier

euclid.ejs.1424187776.pdf
Publication financée par une institution

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Collections

Citation

Jérôme Dedecker, Aurélie Fischer, Bertrand Michel. Improved rates for Wasserstein deconvolution with ordinary smooth error in dimension one. Electronic journal of statistics , Shaker Heights, OH : Institute of Mathematical Statistics, 2015, 9 (1), pp.234-265. 〈10.1214/15-EJS997〉. 〈hal-00971316v3〉

Partager

Métriques

Consultations de la notice

267

Téléchargements de fichiers

51